Word distance distribution in literary texts

Gemma Boleda\(^1\) Alvaro Corral\(^2\)
Ramon Ferrer i Cancho\(^1\) Albert Díaz-Guilera\(^3\)

Universitat Politècnica de Catalunya\(^1\)
Centre de Recerca Matemàtica\(^2\)
Universitat de Barcelona\(^3\)

Corpus Linguistics Conference, Liverpool.
20-23rd July 2009
Goal and motivation

- we are interested in modeling dynamic properties of language
 - as opposed to, e.g., static properties captured by Zipf’s law
- the distribution of **distances between word repetitions**
 - distance = number of words + 1

Example

I have a rabbit. My rabbit eats lettuce. Actually, rabbits usually like lettuce. Have you ever encountered a rabbit who doesn’t like lettuce? My rabbit does.

- distances(rabbit) = 2, 4, 8, 6
Goal and motivation

- we are interested in modeling dynamic properties of language
 - as opposed to, e.g., static properties captured by Zipf’s law
- the distribution of distances between word repetitions
 - distance = number of words + 1

Example

I have a rabbit. My rabbit eats lettuce. Actually, rabbits usually like lettuce. Have you ever encountered a rabbit who doesn’t like lettuce? My rabbit does.

- distances(rabbit) = 2, 4, 8, 6
Goal and motivation

- identify patterns in distance distributions
- research questions
 - can we observe universal (language- and frequency-independent) patterns?
 - if so, are they to be traced in . . .
 - rhetorics?
 - communication?
 - brain functioning?
 - language?
 - more general physical phenomena?
 - why? how?
Related work

- initial work
 - Zipf 1945: number of pages between repetitions of low-frequency words in English
 - Herdan 1956: number of words between repetitions of high frequency words in Russian
- Church and Gale 1995
 - number of documents a word appears in
 - if a word is unfrequent its occurrences are concentrated in a few documents (burstiness)
- Lambiotte, Ausloos, and Thelwall (2007)
 - time units between word repetitions in blogs and RSS feeds
- our approach
 - all frequency scales
 - distances in number of words within a single document
 - need large documents: novels
Measuring word distances

- distances ℓ for *rabbit*: $\ell = 2, 4, 8, 6$
- huge variation in frequency \rightarrow rescale ℓ by the mean:
 - for each word w, define $\theta = \ell/\bar{\ell}_w$
 - example: $\bar{\ell}_{rabbit} = 5$
 - $\theta = 0.4, 0.8, 1.6, 1.2$
 - \rightarrow comparison across frequencies

- compute probability density for sets of words s with close frequencies
Data

- 9 novels in 4 languages
 - English, French, Spanish, Finnish
- varying length
- from 80,000 to 2 million words
- processing
 - automatic tokenization, lemmatization, part-of-speech tagging
 - FreeLing, TreeTagger, Conexor’s tools
What we are studying

Texts as sequencies of ranks: *Moby Dick* (about 200,000 words)

Moby and *Ishmael* are specially shown
Verbs in *Clarissa*, by S. Richardson (year 1748, 1 million words)

→ Burstiness (attraction) and scaling!
Statistics for word repetitions

Adjectives in *Clarissa*

![Graph showing distribution of adjectives in Clarissa]
Statistics for word repetitions

Adjectives in *Don Quijote*, by M. Cervantes (Spanish, 1605)
Statistics for word repetitions

Verbs in *Kevä ja Takatalvi*, by J. Aho (Finnish, 1906)
A universal exception?

Most nouns and pronouns in *Clarissa*
A universal exception?

Excluded nouns and pronouns: 12 out of 315 ($\theta \gg 1$)

Also proper nouns (not shown)
Pronouns

- automatic grouping of words according to distribution
 - community detection algorithm, graph representation

<table>
<thead>
<tr>
<th>Type</th>
<th>Name</th>
<th>Pronouns</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic</td>
<td>Moby Dick</td>
<td>all, itself, many, none, that, them, themselves, this, those, who, whom</td>
</tr>
<tr>
<td></td>
<td>Clarissa</td>
<td>it, all, each, itself, many, none, that, themselves, this, those, what, who, whom</td>
</tr>
<tr>
<td>Special</td>
<td>Moby Dick</td>
<td>he, her, him, himself, I, it, me, myself, she, they, us, we, what, you</td>
</tr>
<tr>
<td></td>
<td>Clarissa</td>
<td>he, her, herself, him, himself, I, me, myself, ourselves, she, them, they, us, we, you, yourself</td>
</tr>
</tbody>
</table>
Pronouns

- automatic grouping of words according to distribution
- community detection algorithm, graph representation

<table>
<thead>
<tr>
<th></th>
<th>Moby Dick</th>
<th>Clarissa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic</td>
<td>all, itself, many, none, that, them, themselves, this, those, who, whom</td>
<td>it, all, each, itself, many, none, that, themselves, this, those, what, who, whom</td>
</tr>
<tr>
<td>Special</td>
<td>he, her, him, himself, I, it, me, myself, she, they, us, we, what, you</td>
<td>he, her, herself, him, himself, I, me, myself, ourselves, she, them, they, us, we, you, yourself</td>
</tr>
</tbody>
</table>
Burstiness

- we observe burstiness or attraction
- is this trivial?
 - we talk about something until we change topic
 - BUT: also function words!
 - AND: two regimes!
Scaling

- pattern that is independent of word frequency
 - in general, same process for common words and rare words
 - common words are a model for rarer words (useful for language; data sparseness)
 - BUT different process for rhetorically relevant words

- is the function related to neurolinguistic mechanisms?
 - priming, constraints on discourse coherence?
Scaling

- pattern that is independent of word frequency
 - in general, same process for common words and rare words
 → common words are a model for rarer words (useful for language; data sparseness)
 - BUT different process for rhetorically relevant words
- is the function related to neurolinguistic mechanisms?
 - priming, constraints on discourse coherence?
General discussion

- we observe universal patterns in word distance distributions
 - language- and frequency-independent patterns
 - burstiness, repulsion, and scaling
 - burstiness also affects function words!
- hypothesis: they are related to
 - rhetorics: patterns in word repetitions
 - communication: focus on topic causes burstiness
 - brain functioning: activation of a word after utterance (priming)
 → not language-specific?
 - more general physical phenomena? (earthquakes!)
we observe universal patterns in word distance distributions
- language- and frequency-independent patterns
- burstiness, repulsion, and scaling
- burstiness also affects function words!

hypothesis: they are related to
- rhetorics: patterns in word repetitions
- communication: focus on topic causes burstiness
- brain functioning: activation of a word after utterance (priming)
 → not language-specific?
 - more general physical phenomena? (earthquakes!)
we observe universal patterns in word distance distributions
- language- and frequency-independent patterns
- burstiness, repulsion, and scaling
- burstiness also affects function words!

hypothesis: they are related to
- rhetorics: patterns in word repetitions
- communication: focus on topic causes burstiness
- brain functioning: activation of a word after utterance (priming)
 → not language-specific?
- more general physical phenomena? (earthquakes!)
Word distance distribution in literary texts

Gemma Boleda1 Alvaro Corral2
Ramon Ferrer i Cancho1 Albert Díaz-Guilera3

Universitat Politècnica de Catalunya1
Centre de Recerca Matemàtica2
Universitat de Barcelona3

Corpus Linguistics Conference, Liverpool.
20-23rd July 2009
Verbs and earthquakes

Verbs in *Clarissa*
Comparing verbs in *Clarissa* with earthquakes in S. California, 1995-1998

\[\theta = \frac{\text{time}}{\text{time}} \text{ for earthquakes} \]