Validation and Tuning of Wordnet Mapping Techniques

Jordi Daudé and Lluis Padré
TALP Research Center
Universitat Politecnica de Catalunya
Barcelona, Catalonia
{daude,padro}@lsi.upc.es

Abstract

In this paper we present an accurate, quantita-
tive and qualitative validation of the method-
ology used by (Daudé et al. 01) to map two
WordNet versions. We check the accuracy of the
technique by applying it to map a WN version
onto itself, which enables not only quantitative
evaluation but also a qualitative study of the
error cases and algorithm tuning. In addition,
we also evaluate the behaviour of the technique
when mapping non-identical hierarchies by ran-
domly erasing synsets from either the target or
the source copy of the used WordNet.

1 Introduction

Building appropriate resources for broad-
coverage semantic processing is a hard and
expensive task, involving large research groups
during long developement periods. The outcomes
of these projects are, usually, large and com-
plex semantic structures, not compatible with
resources developed in previous projects and
efforts. This fact has severely hampered Human
Language Technology (HLT) development.

Thus, in order to integrate in a common multi-
lingual resource several, already developed, large-
scale knowledge sources, a powerful and robust
mapping tool is required to solve version gaps
and minimize side effects. Some examples are
the MultiWordNet Domains —aligned to WN1.6
(Magnini & Cavaglia 00)—, the Spanish, Catalan
and Basque wordnets —aligned to WN1.5 (Atserias
et al. 97; Benitez et al. 98)-, the EuroWordNet
Top Ontology (connected to WN1.5), or Balkanet
and EuroTerm initiatives (aligned to WN1.7).

Nevertheless, automatic ontology mapping
methods are difficult to evaluate. Hand check-
ing of a small —statistically significant— sample of
the performed connections, provides a quantita-
tive idea of the accuracy of the technique, but
does not allow to draw qualitative conclusions.
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In this paper we check the accuracy of the
(Daudé et al. 01) technique by mapping WN1.5
version onto itself, which enables not only quan-
titative evaluation, but also the qualitative study
of error cases. In addition, we also evaluate the
behaviour of the technique in the more realistic
case of mapping non-identical hierarchies, by ran-
domly erasing synsets from either the target or
the source copy of the used WordNet.

2 Method Description

Relaxation labelling (RL) is a generic name for
a family of iterative algorithms which perform
function optimization, based on local informa-
tion, but with global effects. See (Torras 89)
for a summary, or (Padré 98; Atserias et al.
01) for previous applications to NLP tasks. One
of its most remarkable features is that the fo-
cus problem is modelled in terms of compati-
bility /incompatibility constraints (which may be
hand-written, statistical, machine-learned, ...)
between variable-label pairs.

RL uses constraints to increase or decrease the
weight for a variable label. In our case, con-
straints increase the weights for the connections
between a source synset and a target synset. In-
creasing the weight for a connection implies de-
creasing the weights for all the other possible con-
nections for the same source synset. To increase
the weight for a connection, constraints take into
account already connected nodes that have the
same relationships in both taxonomies.

The problem is modelled with a variable for
each node in the source taxonomy, which has
as possible labels all candidate connections for
that node (see Figure 1). Used constraints rely
on checking the existence of a connected ances-
tor/descendant for both ends of a candidate con-
nection. Complexity of constraints varies on the
allowed distance from the candidate connection
and in the simultaneously checked conditions.
The RL algorithm will select the label assignment



for all variables (i.e. the connection for each node)
which better satisfies all constraints. More details
on the algorithm and constraints can be found in
(Daudé et al. 00; Daudé et al. 01).

a

Figure 1: Example of candidate connections

Figure 1 shows an example of possible connec-
tions between two taxonomies. For source node
S1, connection Cy will have its weight increased
due to C5, Cs and C1, while connections Cy and
Cs will have their weights decreased. Eventually,
label Cy will be assigned to variable S;.

3 Validation via automapping

In order to evaluate the performance of the algo-
rithm, we mapped the nominal part of WN1.5 onto
itself. The nominal WN1.5 is almost a tree —few
nodes have more than one hyperonym—, and con-
sists of 60,557 nodes, 11 of which are root nodes,
and 47,110 (77.79%) are leafs.

The candidate conections for a source node are
obtained retrieving all synsets in the target taxon-
omy for all words contained in the source synset.
Since the target taxonomy contains a copy of the
source synset, all synsets have at least one candi-
date connection. In WN1.5, 37,204 synsets are
single-link, that is, they have only one candi-
date connection. They don’t need to be disam-
biguated, but are helpful to solve ambiguity for
other nodes connected with them. The remain-
ing 23,353 synsets (38.56%) are multiple-link, i.e.
have more than one candidate connection. The
number of candidates per multiple-link sysnset
ranges from 2 to 66, with an average of 4.26.

Using the algorithm with the same taxonomy as
source and target not only is useful to evaluate its
correctness and efficiency, but also to tune some of
the used constraints, and to detect existing gaps

and incorporate new constraints to cover them.

In this paper we analyze the behaviour of the
algorithm on an incremental basis, starting with
the simplest constraint configuration, and pro-
gressively extending the used model to enhance
its performance.

3.1

The simplest constraint set checks for the exis-
tence of a connection between immediate (11) hy-
pernyms or hyponyms at both ends of the candi-
date connection, such as (C4, C}) in Figure 1.

Table 1 presents the results obtained using 11
constraints. Precision and recall are given over
single and multiple link synsets. Recall is com-
puted as the percentage of source nodes that keep
the correct connection among their proposed tar-
gets. Precision is computed as the number of pro-
posed targets that are correct connections.

Over trivial single-link synsets, the performace
is obviously perfect. Over the multiple-link sub-
set, some correct links are discarded by the algo-
rithm, yielding a recall below 100%. There are
only ten error cases —grouped in four clusters—
which can be found in Figure 2.

In each cluster, the error in one of the synsets
causes the error in the others. For instance, case
A in Figure 2 is more detailed in Figure 3, where
we can observe that the target synset 00145061
is only reinforced by constraint C1, while target
08150656 receives support from constraints C2
and C3, causing it to be wrongly selected.

Immediate connection (1I) constraints

11 1B
NODES PREC.-RECALL PREC.-RECALL
37,204  100%-100%  100%-100%
23,353 93.80%-99.96% 93.86%-100%
60,557 97.51%-99.98% 97.54%-100%

single-link
multiple-link
Total

Table 1: Precision-recall results obtained using 11
and IIB constraint sets

11 constraints provide support for a link from
the existence of either a linked hyperonym or hy-
ponym, but not from the simultaneous existence
of them both. IIB constraints extend the II set
with an extra support for those links with a simul-
taneously linked hyperonym and hyponym. This
is precisely the case in the above mentioned er-
rors, since for instance in case A, both hyperonym
and hyponym for the source 00145061 are linked
with the respective hyperonym and hyponym for
target 00145061, while the hypernym for source
00145061 is not linked with the hyperonym for
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Figure 2: All wrong links selected by II constraint.

the other candidate target 08150656.

SQURCE

TARGET
WordNet 1.5 ! WordNet 1.5
|
[ToPI 00016649 . [TOP] 00016649
haran_act  on . A o action [TOP] 00017394
human_activity | human_act i vi t possessi on

00144620

00144620
correction correction [ reconpense |
correcting correctin Leconpense
rectification rectification
08150656 08146041
00145061 00145061 | I |

conpensation

reconpense

reconpense
conpensation c

onpensat i on

al | onance
adj ust ment

00054202

reparation
00054202 amends 08157161

v anmends

| i ndemi ty
indemi fication
restitution
redress

Constraint C1 damages

Constraint C2
Constraint C3

Figure 3: Details of wrong link in Fig. 2, case A.

The use of IIB constraint will provide addi-
tional evidence in favour of the correct link, that
should overwhelm the evidence provided by two
hyponym constraints supporting the wrong can-
didate. As can be seen in Table 1, the use of
these constraints produces a recall of 100% and
an increment in precision, solving all wrong links
presented in Figure 2.

This confirms the need for B constraints to help
the disambiguation in cases such as those pre-
sented in the example. Note that this is a gen-
eral statement, valid for any hierarchy, since only
class/subclass relationships are being used.

3.2 Using extra hyponym information

Although we have a 100% recall, precision is not
perfect yet. This is due to remaining ambiguity in
some nodes. Figure 4 presents an example of such
a node (00026244) that occurs either with 11 or 1B
constraints. Details on the involved relationships
are also depicted: We can observe that source
00026059 is correctly linked since its hyponyms
(00029218 and 00171746) provide the necessary
evidence. Contrarily, source 00026244 is not dis-
ambiguated because both candidates have the
same supporting evidence: constraint C1 for one
candidate and C2 for the other.
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Figure 4: Relationship structure for ambiguous
node example

This cases could be solved if knowledege about
the number of daughters of each node was taken
into account. We tested the following two ways of



using this information (see Table 2 for results):

1. zD constraint (Zero Daugthers): A sim-
ple boolean check consisting of a constraint
that reinforces a connection between two leaf
nodes (i.e. when both have zero daugthers).

2. ED constraint (Equal Daugthers): A gener-
alization of the previous, consisting of a re-
inforcement of a connection between nodes
with equal number of daughters.

1IB+ZD 1IB+ED
NODES PREC.-RECALL PREC.-RECALL
37,204  100%-100% 100%-100%
23,353 94.90%-100% 94.93%-100%
60,557 97.97%-100% 97.98%-100%

single-link
multiple-link
Total

Table 2: Precsion-recall results when using con-
straints on the number of daughters.

When using constraints 11B+2D, 1,136 nodes re-
main ambiguous, all but three of which are leaf
nodes. One of these three is synset 02323757,
presented in Figure 5.
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Figure 5: Example of non-leaf ambiguous node.

It can be observed that the ambiguity between
targets 02323757 and 02323518 is caused by I1IB
constraints Cl1 and C2 in Figure 5, and since
02323757 is not a leaf, ZD constraint does not
apply. If constraint ED is used instead, the am-
biguity is correctly solved, since the synset for
dog_collar is correctly linked, causing its hyper-
onym to be also correcly disambiguated.

When using IIB+ED constraints, the amount of
remaining ambiguous nodes is 1,129, all of them
leafs. Leaf nodes are the weakest point of the algo-
rithm, since they have no descendants to provide
information. Thus, when a node has as candidate
targets two leaf sibling synsets, disambiguation

is not possible using only hyper/hyponymy rela-
tionships. Example of such cases are the three
leaf nodes in Figure 6.
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Figure 6: Example of ambiguity in leaf nodes

3.3 Using other relationships

Although the main structure of WordNet re-
lies in the taxonomical hyper/hyponymy relation-
ships, it contains many other relationships. The
nominal part includes also antonymy, meronym,
holonymy and attribute. The former three are
noun-to-noun, i.e. internal to the nominal part,
and the later relates noun-to-adj.

Since each ambiguous synset has different
meronyms, using an II constraint on this relation-
ship enables the algorithm to solve those ambi-
guity cases. Results when using all noun-to-noun
relationships (plus ED constraints) are presented
in the Structural column in Table 3.

With this model, there are 765 nodes that still
remain ambiguous, since they do not have any
other relationship we can use to provide extra
information to help the disambiguation process.
Thus, the use of non-structural information (i.e.
not related to node relationships but to node sim-
ilarity measures) will be necessary. Some of those
cases appear in Figure 7.

Structural  Structural+wa
L#NODES PREC.-RECALL PREC.-RECALL
37,204 100%-100% 100%-100%
23,353  96.54%-100% 99.991%-100%
60,557 98.64%-100% 99.997%-100%

single-link
multiple-link
Total

Table 3: Precision-recall results obtained with
each constraint model

3.4 Using non-structural information

To disambiguate cases in which a decision is not
possible using only relationship-based constraints,
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Figure 7: Example of nodes than can not be disambiguated with only relationship structure informa-

tion

we may extend our model with non-structural in-
formation which supports the connection between
similar nodes. This obviously requires a way of
computing node similarity that does not depend
on the relationships among them. In the case of
WN we may use information internal to the node:

1. W constraint (coincident Words). The larger
the number of coincidences in the words of
two synsets, the more similar they are con-
sidered.

2. G constraint (coincident Gloss). The larger
the number of coincidences in the words of
both synsets glosses, the more similar they
are considered. Non-content words (articles,
prepositions, etc.) are excluded.

Using W constraint (word coincidence count)
correctly disambiguates the example presented on
the left of Figure 7. Similarly, the G constraint
(gloss coincidence count) correctly disambiguates
the right hand side example. Thus, to disam-
biguate as many cases as possible, we will use both
constraints, though the G constraint will have a
low coverage, since many WN1.5 synsets do not
have a gloss.

Rightmost column in Table 3 shows the results
obtained with all structural and non-structural
constraints. There are only two remaining am-
biguous synsets, one of which is presented as sam-
ple in Figure 8. It can be seen that there is not
enough information in the taxonomy (even for
humans) to disambiguate those cases, neverthe-
less, one may wonder if they are actually different
senses or merely an error in the hierarchy.

Thus, our validation method via the mapping
of a hierachy onto itself turns out to be also use-
ful to detect possibly duplicated concepts in the
semantic network.
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Figure 8: Example of node that can not be dis-
ambiguated with all the used constraints.

4 Mapping non-identical hierarchies

We have used relaxation labelling to map a hier-
archy onto itself, and this has allowed us to val-
idate and tune the technique. But since we are
interested in using it on non-identical taxonomies
(different WN versions, or different resources, even
for different languages), we must consider whether
the algorithm will we equally useful when used on
different taxonomies.

In that case, II constraints may not adequate
to our needs, since although both structures may
be build under similar criteria, there may be local
differences that may result in node insertions or
deletions in one side respect to the other.

For this reason, more general constraints will
be necessary, in order to allow the connection of
candidate nodes that do not have the same rela-
tionships with their neighbours, but do have sim-
ilar relationship patterns. The used constraints
will be the same than above, but the connected
ancestor /descendant is no longer required to be
immediate, thus, any (AA constraints) matching



node will be recursively searched, this is the case
for pair (Cy, Cs) in Figure 1.

Results when using AA constraints over two
identical hierarchies (WN1.5-WN1.5) are presented
in Table 4. As could be expected, since II con-
straints are a particular case of AA, precision re-
sults are identical to those in tables 2 and 3.
Nevertheless there is a slight decrease in recall,
which correspod to two wrongly solved synsets,
with a similar cause: One of those cases is synset
02526527 in Figure 9.

SOURCE
WordNet 1.5
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TARGET
WordNet 1.5

[TOP] 00002403
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Structure

‘
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Figure 9: Example of wrong connection when us-
ing AA constraints.

If we use only II constraints, this node re-
mains ambiguous, since its two candidates have
the same supporting evidence (a connected hy-
peronym), while if we use AA constraints, there is
only one constraint (C1 in the figure) supporting
the right candidate, but two constraints (C2 and
C3) for the wrong one. This behaviour is difficult
to avoid, though a promising possibility would be
performing bidirectional mapping, that is, instead
of assigning a passive role to the target taxonomy,
have it simultaneously mapped to the source, and
take advantadge of the coincidences in both sides.

To evaluate the algorith perfomance when map-
ping different hierarchies, we start mapping two
identical taxonomies (WN1.5), progressively intro-
ducing differences between them. The introduced
diferences consist of node deletions from one of
the taxonomies (either target or source). Note
that the deletion of one node in one taxonomy
can be seen as an insertion of its corresponding
synset in the other. The nodes to be deleted are
randomly selected, restructuring the hierarchy to

maintain consistency:

e If a root node is deleted, all its daughters
become roots.

e If an intermediate node is deleted, all its
daughters become daughters of the parent of
the deleted node. If the parent is also elimi-
nated, this rule applies recursively. This also
applies to all transitive relationships other
than hyper/hyponymy (namely, all kinds of
holonymy /meronymy).

e Non-transitive relationships arriving to the
deleted node are simply deleted. This is the
case of antonymy.

The simplest case is keeping the target taxon-
omy untouched, and mapping onto it a progres-
sively distorted version of the same hierarchy. In
this case, all remaining source nodes after the dis-
tortion still have the same candidate connections
they had in the original taxonomy, since target
structure is unchanged. Evaluation for this case
using I, AA and AA+WG is presented in Figure 10.
Values are computed over multi-link synsets.
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Figure 10: Results when mapping a progressively dis-
torted WN1.5 taxonomy to a complete one.

The points at zero value for the x-axis cor-
respond to the unmodified WN1.5 mapping pre-
sented above. It can be observed how the AA and
AA+WG constraint sets are more robust that 11
when divergence between both taxonomies is in-
creased. II maintaints a higher recall, but the cost
is a much lower precision. The compromise evalu-
ated via Fjg—; yields the conclusion that recursive
constraints better deal with taxonomy distortion.

The reverse case, i.e. mapping a complete tax-
onomy onto a distorted yields lower results, since
there are source nodes for which their correct con-
nection is removed from the target, or even, all
possible connections for that node are removed
from the target, causing a larger decrease both in
precision and recall.



AA+ED AA Structural  AA Structural4+waG
#NODES PREC.-RECALL  PREC.-RECALL PREC.-RECALL
single-link 37,204 100%-100% 100%-100% 100%-100%
multiple-link 23,353 94.93%-99.99%  96.54%-99.99% 99.991%-100%
Total 60,557 97.98%-99.99%  98.64%-99.99% 99.997%-100%

Table 4: Results when mapping WN1.5 onto itself using recursive constraints.

Apart from keeping either source or target tax-
onomy untouched, we may consider the general
case where both taxonomies are distorted in some
degree. This is more similar to a real case in which
the source taxonomy has both insertions and dele-
tions with respect to the target taxonomy.

Precision for Il constraints Recall for Il constraints

% of eliminated

source nodes source nodes

9% of eliminated target nodes 9% of eliminated target nodes

Precision for AA constraints Recall for AA constraints

% of eliminated

source nodes source nodes

9% of eliminated target nodes 9% of eliminated target nodes

Precision for AA+WG constraints Recall for AA+WG constraints.

source nodes source nodes

9% of eliminated target nodes. 9% of eliminated target nodes.

Figure 11: Results when mapping two progressively dis-
torted wN1.5 taxonomies.

Figure 11 presents the results for all combina-
tions of distortion levels. Obviously the list of
randomly deleted nodes is not the same for each
taxonomy, although there may be nodes that, by
chance, belong to both lists. It is worth noting
that for a high distortion levels such as 90%-90%,
each taxonomy is only 10% in size of the original
(since 90% of the nodes have been deleted), and
that the expected proportion of nodes present in
both taxonomies is the probability that a node is
not deleted in any of both taxonomies (that is,
0.1 x 0.1 = 0.01), i.e. 1% of the original taxon-

omy (or 10% of the distorted versions, since they
are ten times smaller). Even in these conditions,
results keep about 10%, that is, the algorithm is
connecting a large amount of the nodes that can
be connected, since the remaining 90% have no
candidate connections.

5 Conclusions

We have validated a WN mapping technique based
on relaxation labelling through the analysis of
the results of mapping WN1.5 onto itself. The
main conclusions of this work are that the pro-
posed method is reliable and degrades gracefully
when differences between mapped taxonomies in-
crease, maintaining a reasonable precision and re-
call level since the lower results correspond to a
higher amount of unsolvable nodes more than to
a higher error rate. We also detected which con-
straints are usefeul to solve several errors com-
mited by the base model, and spotted a set of
WNL1.5 synsets that present neither structural nor
lexical differences.
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