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Abstract
Statistical user simulation is an efficient and effective way to
train and evaluate the performance of a (spoken) dialog system.
In this paper, we design and evaluate a modular data-driven di-
alog simulator where we decouple the “intentional” component
of the User Simulator from the Error Simulator representing dif-
ferent types of ASR/SLU noisy channel distortion. While the
former is composed by a Dialog Act Model, a Concept Model
and a User Model, the latter is centered around an Error Model.
We test different Dialog Act Models and Error Models against
a baseline dialog manager and compare results with real dialogs
obtained using the same dialog manager. On the grounds of dia-
log act, task and concept accuracy, our results show that 1) data-
driven Dialog Act Models achieve good accuracy with respect
to real user behavior and 2) data-driven Error Models make task
completion times and rates closer to real data.

1. Introduction
Data-driven techniques are a widely used approach to the de-
velopment of robust (spoken) dialog systems, particularly when
training statistical dialog managers (DMs) [1, 2]. Generating
the data to train such DMs can be costly as potential users
are not always available for the task at hand; moreover, once
the data is available, it must be manually analyzed and anno-
tated. This is why user simulators (US) have been introduced
to replace real conversations with synthetic ones and optimize a
number of SDS components. Indeed, several approaches exist
to the design of user simulators, as illustrated in [1]: as we aim
to train statistical DMs [2], we focus on the intention (rather
than lexical) level of simulation, as formalized in [3].

In this paper, we: 1) design a simulator where the Error
Model derives its parameter estimates from real conversations;
2) define and implement different simulation models, by vary-
ing the Dialog Act Model and the Error Model components; 3)
evaluate different simulators against real dialogs on the grounds
of dialog act, task and concept accuracy. In particular, Section 2
presents our simulator architecture, Section 3 presents the sim-
ulation environment where we conduct our experiments, illus-
trated in Section 4. Finally, Section 5 positions our research in
the context of related work and our conclusions and future work
are summarized in Section 6.

2. Simulator Architecture
Data-driven simulation takes place within the rule-based ver-
sion of the ADASearch system [2], which uses up to 16 dia-
log acts (described in [4]) to deal with three tasks and a dozen
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Figure 1: Architecture of the simulation environment

concepts related to lodging and events in Trentino, Italy. Since
simulation in our framework occurs at intention level, the sim-
ulator and DM exchange actions, i.e. ordered sequences of
dialog acts and (optionally) concept-value pairs. As illus-
trated in Figure 1, at turn t, the DM issues an action as, de-
fined as an ordered dialog act sequence as = {da0, .., dan},
where each dialog act carries zero or more concept-value pairs:
daj = daj(c0(v0), .., cm(vm)). For instance, we could have
as = {Apology(); Clarif-request(Event type(fair))}.

A User Simulator and an Error Simulator are then involved:
the former estimates a plausible user action âu given the DM
action as; the latter distorts âu into an N -best list of simulated
actions S = {a0

u, .., aN
u } received by the DM at t + 1 in “re-

placement” of the user-ASR-SLU pipeline. A confidence score
is associated with each simulated action aj

u and each individual
concept forming a brick of interpretation.

In order to generate the list S of upcoming action hypothe-
ses, the probability of each action being generated after the pre-
vious DM action as is estimated based on the conversation con-
text. Such a context is represented by a User Model, a Dialog
Act Model, a Concept Model and an Error Model. In particular,

• the User Model simulates the behavior of an individual
user in terms of goals and other caller-specific features
such as cooperativeness and tendency to hang up;

• the Dialog Act Model generates a distribution of M ac-
tions Au = {a0

u, .., aM
u }, each ai

u being a plausible se-
quence of dialog acts and concepts given as; one action
âu is chosen out of Au following specific criteria;

• the Concept Model generates concept values for âu by
estimating P (ci(vi)|da(c0, .., cm)) ∀i ∈ [0..m];

• the Error Model simulates the noisy ASR-SLU chan-
nel by “distorting” âu with errors; it estimates
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P (ci(v̂i)|ci(ṽi)), ∀ci, where v̂i may differ from the in-
tended value for ci, ṽi. Eventually, the N -best list of
noisy interpretations S = {a0

u, .., aN
u } is returned.

In this modular architecture, the different levels and phases
of simulation are factored out, allowing a plug-and-play com-
parison of simulation regimes as illustrated in Sections 2.1–2.4.

2.1. User Model

The User Model represents user-specific features, both persis-
tent (cooperativeness, patience, no input probability) and tran-
sient, i.e. the current user goal. In particular, cooperativeness
is a real value representing the ratio of concepts mentioned in
as that also appear in âu; this ratio is computed turn-by-turn
from a collection of real conversations and then averaged to
a value coop (see [3]). Patience is defined as the tendency to
abandon the conversation (hang up event), resulting in pat =
P (HangUp|as). Similarly, no input probability accounts
for user behavior in noisy environments, resulting in noi =
P (NoInput|as). Finally, the user goal UG is represented as a
task name and the list of concepts and values required to fulfill
it: an example of UG is {Activity(EventEnquiry), Time day(2),
Time month(may), Event type(fair), Location name(Povo)}.

As our experiments aim at comparing different Dialog Act
and Error Models with the same persistent User Model features,
we fix coop, pat and noi to their mean values as found in our
data, while UG varies from dialog to dialog following goal dis-
tribution in the same data. As soon as the DM action is received
by the simulator, it is passed to the User Model which generates
a HangUp with probability pat; else, a NoInput is returned
to the DM in place of action hypotheses at probability noi; oth-
erwise, UG and coop are propagated to the following models.

2.2. Dialog Act Model

We define two Dialog Act (DA) Models, named Obedient and
Task-based. In the Obedient (OB) model, infinite patience and
cooperativeness are assumed of the user, who will always re-
spond to each query requiring values for a set of concepts with
an answer concerning exactly such concepts. Formally, the
model responds to a DM action as with a single user action
âu, obtained by consulting a rule table, having probability 1. In
case a request for clarification is issued by the DM, this model
returns a clarifying answer. Any offer from the DM to continue
the conversation will be either readily met with a new task re-
quest or denied at a fixed probability. The OB model is useful
to represent an “ideal”, predictable user behavior; in [2], a RL-
based dialog manager has been trained with this model.

The Task-based (TB) model is a variation of the bigram
model defined in [5]. Here, a matrix records the transition fre-
quencies of system actions to user actions, including hang up
and no input/no match. Given a DM action as, the model re-
sponds with Au, a list of M user actions whose probabilities
derive from action distribution in real data:

Au = {(a0
u, P (a0

u|as)), .., (a
M
u , P (aM

u |as))}.

As one of the main drawbacks of the bigram model is that the
space of user actions includes incompatible actions with respect
to the user goal, the TB model (formalized as goal model in
[6], but not experimented with using real data) only takes into
account the actions taken under a specific task Tk as annotated
in the training data. The TB model divides the training data into
one partition for each Tk, then creates a bigram model for each

partition, by computing:

Au = {(a0
u, P (a0

u|as, Tk)), .., (aM
u , P (aM

u |as, Tk))}, ∀ k.

In order to vary the simulation behavior, the choice of âu out of
Au is a random sampling from Au according to the distribution
of probabilities therein. As the partition of the training data
reduces the number of observations, the TB model includes a
strategy to back off to the simpler bigram model and even to the
unigram distribution of DAs as a last resort.

2.3. Concept Model

The Concept Model takes the action selected by the DA Model,
âu = {da0, .., dan}, and attaches values and interpretation
confidences to dialog act concepts. In this work, the Con-
cept Model assigns the corresponding User Goal values for
the required concepts: hence, P (ci(vi)|da(c0, .., cn)) = 1 if
ci(vi) ∈ UG, 0 otherwise; in case ci /∈ UG, ci will not ap-
pear in the final action. Similar to [7], the confidence attached
by the CM to a ci(vi) interpretation is randomly chosen within
the average±std.dev. range of such concept as observed in the
available data when the concept is correct. The Error Model
may modify such confidences, as described below.

2.4. Error Model

The Error Model is responsible of simulating the noisy commu-
nication channel between user and system; as we simulate the
error at SLU level, errors consist of incorrect concept values.

We have been experimenting with a data-driven (DD)
model by which the precision Prc obtained by a concept c in a
real dataset is used to estimate the frequency with which an er-
ror in the true value ṽ of c will be introduced: P (c(v)|c(ṽ)) =
(1 − Prc). For specific concepts, such as the intended task, a
finer error scheme based on a confusion matrix of concept val-
ues has been adopted; this was not the case for concepts for
which the amount of data was insufficient. The confidence at-
tached to an erroneous interpretation is modified to a random
value in the average±std.dev. of such concept when incorrect.
The Error Model outputs the N -best1 list S = {a0

u, .., aN
u }.

For the sake of comparison, we also implement a “truthful” Er-
ror Model (TRU), representing noise-free communication, by
which the top action in S coincides with the correct interpreta-
tion and has confidence 1.0.

3. Simulation Environment
The dialog manager used in both real and simulated dialogs fol-
lows an Information State Update approach [8], where the in-
formation state is represented as a database shared by all mod-
ules of the SDS [2]. The dialog state contains (simulated) SLU
results, application information already provided by the (sim-
ulated) user including their grounding status, and counts of
NoInput events, amongst others. Given this information, the
DM employs a ‘dialog move engine’ to determine the system
action and response: this uses several sets of forward chain-
ing inference rules. Typical dialog moves available to the sys-
tem are those that are needed for the application domain, for
example forward looking moves such as ‘question-parameter’,
‘confirm-parameter’, and ‘request-repeat’, and backward look-
ing moves such as ‘accept-parameter-implicitly’ (by the system)
or ‘answer-question-parameter’ (by the user). The DM initially

1To align with the behavior of our DM [2], N = 2 in our experiments.
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issues action [Greet();Offer()], open to a wide range of user ut-
terances, then dialog becomes more constrained.

An example of DM - simulator action exchange from real
data is illustrated in Figure 2: each action is an ordered sequence
of dialog acts and concept-value pairs with their confidence.

Figure 2: An example of Simulator (SIM) - DM exchange
DM: [Greet();Offer()]
SIM: [Info-request(activity=EventEnquiry{0.65};

type=expo{0.65})]
DM: [Info-request(location)]
SIM: [Answer(location=Vela{0.6})]
DM: [Info-request(month)]
SIM: [Answer(month=November{0.23})]
DM: [ClarificationRequest(month= November)]
SIM: [Yes-answer({0.82})]
DM: [Info-request(day)]
SIM: [Answer(day=7{0.88})]
DM: [ReportOnAction();Inform(dblookup);Offer()]
SIM: [Info-request(activity=EventEnquiry{0.64})]
DM: ...

4. Evaluation
We evaluate our simulator models using two sets of metrics:
first, “offline” metrics are used to assess how realistic the ac-
tion estimations by DA Models are with respect to training data
(Sec. 4.1). Then, “online” metrics (Sec. 4.2) evaluate end-to-
end simulator performance by comparing real dialogs with fresh
simulated dialogs in terms of dialog act distributions, error ro-
bustness and task duration and completion rates.

4.1. “Offline” metrics

In order to compare simulated and real user actions, we per-
form an evaluation of dialog act Precision (P ) and Recall (R).
Following [3], these are measured in a turn-by-turn basis as:
P = #correct DA

#DA simulated action
; R = #correct DA

#DA real action
.

The unit of comparison is the dialog act and the set of at-
tached concepts, as it is the action composition that the DA
Models produce. We consider that a simulated dialog act is cor-
rect when it appears in the real action, including its concepts.
We use 5-fold cross-validation on the set of 74 dialogs obtained
from the ADASearch system (see Sec. 3). Each dataset consists
of a sequence of turns containing the representation of the DM
and the user actions. For each DM action as, the DA Model re-
sponds with Au, the list of user actions and their probabilities as
described in Sec. 2.2. The simulator then chooses a user action
âu from Au, to be compared with the real user choice ãu.

Table 1: Precision and Recall compared to real user behavior

Simulation Most likely
Model P R P R

Obedient 33.8 33.4 33.9 33.5
Task-based 44.4 44.0 51.1 50.8

Table 1 (col. “Simulation”) shows P /R obtained for the
OB and the TB models, clearly illustrating that the latter is
much better at reproducing real action selection. As a refer-
ence, we also compare the most likely user action a∗u as found
in the simulator training data with the real user choice (Table
1, col. “Most likely”): a∗u improves the expected P /R, provid-
ing a sort of “oracle” performance for the DA Model. How-
ever, as pointed out in [9] the purpose of simulation is to take

into account not only the “mean” user behavior but any possi-
ble behavior, hence action sampling as illustrated in Sec. 2.2 is
preferable. Nevertheless, the real test concerns online deploy-
ment of the simulators with different user behaviors, such as
“fresh” user goals and data, as discussed in the next section.

4.2. “Online” metrics

We compare dialogs generated in the simulation environment
using the same DM and different combinations of DA and Error
Models on the grounds of dialog act distribution, concept P/R,
and task completion rate/time. In order to align with our dataset
of about 60 real dialogs, we ran the same amount of simulated
dialogs for the four combinations of the following modules: a)
the Truthful (TRU) and Data-driven (DD) Error Models; b) the
Obedient (OB) and Task-based (TB) DA Model. The dialogs
have been stored using an XML log format and uploaded into
a Web tool for annotation and evaluation using the same proce-
dure as for real data.

An initial look at the Dialog Act distribution in real data in
comparison to the data produced by the DA Models (Figure 3)
shows that OB only uses a subset of the DAs actually employed
by real users, and it is easy to notice that the distribution of
DAs is much more realistic when TB is used. Furthermore, we
evaluated KL−divergence of the DA distributions produced by
the Obedient and the Task-based model with respect to the real
data distribution, following [10]. While the OB model obtained
a KL−divergence of 0.926, the TB model almost reached zero
(0.067), indicating that dialogs simulated by the latter are more
similar to real dialogs.
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Figure 3: Dialog Act distribution in real dialogs vs dialogs sim-
ulated using different DA Models

Error robustness Concept-value precision P and recall R are
reported in Table 2. While OB DA Model combined with TRU
Error Model achieves an impractical 100% P and R, except
in the case of Confirm as no value requires clarification due to
the perfect communication channel, we also achieve unrealistic
precision and recall in simulation regimes where a task-based
model (TB) is combined with the truthful Error Model. Indeed,
although the user’s cooperativeness is made less than perfect by
the presence of conversational fillers, clarification requests, or
even the tendency to over-answer (TB+TRU column of Table
2), we still see very high P/R figures with respect to real data.

When comparing the Obedient and the Task-based DA
Model against the Data-Driven Error Model, precision and re-
call appear much closer to those of real data in the latter case.
In most cases however, concept-level accuracy of simulated di-
alogs appears overly “optimistic”.
Task statistics Finally, task durations and completion rates
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Table 2: Precision/Recall of selected concepts in different sim-
ulation models vs real dialogs. OB/TB = Obedient/Task-based
DA Model; TRU/DD= Truthful/Data-Driven Error Model

Real OB+DD TB+TRU TB+DD
Concept P R P R P R P R

Event 63.6 51.8 37.5 37.5 100 100 51.1 51.1
Location 64.2 71.5 71.4 71.4 100 100 71.2 71.2
day 55.0 59.9 85.8 85.8 85.4 94.1 65.3 73.5
month 67.5 66.5 78.9 78.9 78.3 78.3 57.2 62.8
Confirm 90.8 99.4 94.5 94.5 N/A N/A 94.4 94.4

are compared in Table 3 against the same figures obtained for
real data for the tasks supported by ADASearch: lodging en-
quiry/reservation and event enquiry. From here, we can clearly
see that data-driven error simulation is vital to make dialogs re-
alistic: it is sufficient to compare OB+DD and OB+TRU, and
even more TB+DD and TB+TRU. This legitimizes the presence
of an Error Model also in the case of a very sophisticated DA
Model. For instance, clarification requests never appear within
the TB Model when the truthful Error Model is applied: as per-
fect communication is assumed, concept confidence is highest.
In addition, the number of turns required to complete tasks is
much closer to real data when using the TB Dialog Act Model.

Table 3: Task duration/completion in simulated vs real dialogs

Lodging Enquiry Lodging Reserv Event Enquiry All
Model #turns TCR #turns TCR #turns TCR TCR
OB+TRU 8.0±0.0 100 8.0±0.0 100 5.0±0.0 100 100
OB+DD 9.2±0.0 78.1 9.7±1.4 82.4 8.1±2.9 66.7 76.6
TB+TRU 8.6±0.8 94.3 9.2±0.9 92.5 5.4±0.5 89.5 92.5
TB+DD 12.3±3.2 66.7 13.0±4.2 80.3 8.1±3.6 58.8 72.3
Real data 11.1±3.0 71.4 12.7±4.7 69.6 9.3±4.0 85.0 73.4

5. Related Work
Initial work on interaction simulations for task-oriented dialog
saw the introduction of bigram action models and their varia-
tions [5, 11, 12]; goal-directed simulation was later proposed
by [6]. However, early simulators mainly focused on action (or
dialog act) transition models and did not simulate ASR/SLU er-
ror; moreover, in such models probabilities tended to be hand-
crafted. Very recently, fully data-driven statistical simulators
decoupling the state-transition model from noisy channel rep-
resentations have been proposed [7, 13], however most studies
choose the word level of abstraction; only [14] deals specifi-
cally with concepts but models fixed error rates for all concepts.
To better control the training of Reinforcement Learning-based
Dialog Managers, as in [2], we prefer to maintain the level of
abstraction higher and focus on concept-level simulation.

The first comparative evaluation of User Simulators was
achieved in [3], although without a focus on the impact of error
simulation; we propose an evaluation where artificial and real
dialogs are collected using the same Dialog Manager, and fo-
cus on the contribution of various combinations of Dialog Act
and Error Models on dialog act distribution, concept accuracy,
task completion rates and durations. However, as highlighted in
[15], current evaluation metrics might not be sufficiently power-
ful to capture fine-grained simulator properties such as realism.

6. Conclusion
We design data-driven statistical dialog simulators for training
statistical dialog managers from real user interactions. Our sim-
ulators support a modular combination of user-specific features
with different models of dialog act and concept-value estima-
tion as well as ASR/SLU error simulation.

We evaluate different combinations of user action genera-
tion and error simulation against real data obtained with a base-
line dialog manager, obtaining realistic simulations in terms
of dialog act distribution, concept accuracy and task comple-
tion rate. In particular, the dialog act distribution produced
by our task-based dialog act model achieves a very low KL-
divergence (0.067) with respect to real data; moreover, the task
completion rate of 72.3 obtained by combining a task-based di-
alog act model with a data-driven error simulator is very close to
that of real conversations in our domain (73.4). In future work,
we will refine our simulators by studying additional features in
the User Model designing and finer-grained Dialog Act models.
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