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All speech recognition systems require some form of
signal representation that parametrically models the
temporal evolution of the spectral envelope. Current
parameterizations involve, either explicitly or implicitly, a
set of energies from frequency bands which are often
distributed in a mel scale. The computation of those
filter-bank energies (FBE) always includes smoothing of
basic spectral measurements and non-linear amplitude
compression. A variety of linear transformations are
typically applied to this time-frequency representation
prior to the Hidden Markov Model (HMM) pattern-
matching stage of recognition. In the paper, we will
discuss some robustness issues involved in both the
computation of the FBEs and the posterior linear
transformations, presenting alternative techniques that
can improve robustness in additive noise conditions. In
particular, the root non-linearity, a voicing-dependent
FBE computation technique and a time&frequency
filkering  (tiffing) technique will be considered.
Recognition results for the Aurora database will be
shown to illustrate the potential application of these




alternatives techniques for enhancing the robustness of
speech recognition systems.

1. Introduction

Current speech recognition systems use a pattern matching approach [35]. The
classifier, which is commonly based on hidden Markov models (HMM), relies on a
speech spectrum representation that must be robust to signal degradations.

The most widely used spectral parameters are the logarithmic filter-bank energies (log
FBESs). Usually, the discrete cosine transform (DCT) is used to compute from the log
FBEs a set of uncorrelated parameters, the so-called mel-frequency cepstral
coefficients (MFCC) or mel-cepstrum, probably the most used spectral representation in
speech recognition [3]. On the other hand, orthogonal (Legendre) polynomial filters are
used to compute the supplementary dynamic (delta) feature vectors for each frame [5].
For example, the recent distributed speech recognition (DSR) standard front-end for
clean speech (ETSI STQ WI007 [4]) establishes this kind of speech representation.

In this paper, we intend to address several issues involved in the various blocks of the
parameterization scheme, reviewing and discussing a few salient points that have
traditionally been considered unquestionable. In particular, both the logarithmic non-
linearity, the cepstral coefficients and the usual delta and double-delta time filters will be
discussed and more robust alternatives will be presented.




2. Non-linearly compressed filter-bank energies

In current speech recognition front-ends, the first parameterization step consists of
extracting a short-time representation of the spectral envelope for each speech frame.
There are many reported techniques to estimate the set of spectral parameters [15] [34]
[35], but they always combine some kind of smoothing of raw spectral measurements e
with non-linear operations. {siam

2.1 Spectral smoothing and FBEs

Spectral smoothing is used to remove the harmonic structure of the speech spectrum
corresponding to pitch information and to reduce the variance (error) of the speech
spectral envelope estimation. Additionally, an envelope representation with a small
number of parameters is obtained. That operation has basically been done in two
alternative ways: linear prediction (LP) analysis and spectral band energy estimation
[35]. The strength of the LP method arises from the fact that it matches the all-pole
model of speech production. In this way, it is able to approximately separate the vocal
tract response, which corresponds to the spectral envelope, from the glottal excitation.

However, the band energy parameters have become increasingly popular. They
separately represent the energy at each frequency band since they result from
integrating the energy values in the time-frequency area specified by the frame length
and the effective bandwidth. The main reason of the usefulness of these energies is
perhaps the higher flexibility of the sub-band approach with respect to the full-band
approach involved in LP modeling. In fact, it offers the possibility of defining the width
and shape of the bands along the frequency axis. Also, if the signal-to-noise ratio (SNR)




of each band is known, the band energy representation allows to use it in
straightforward ways: noise masking, spectral subtraction, etc [15].

Currently, the most used implementation of the filter-bank analysis [3] operates in the
frequency domain by computing a weighted average of the magnitude (or, sometimes,
the squared magnitude) of the DFT values of the windowed speech frame in each
frequency band, obtaining in this way the so-called filter-bank energies (FBES). Figure 1
shows the sequence of operations involved in the computation of the FBEs for a given
windowed speech frame; it also includes the posterior non-linear compression step from
section 2.3.

Windowed (Square) Frequency Non-linear
speech p DFT p weighted b compression
frame magnitude average

Figure 1. Usual scheme for computing the non-linearly compressed filter-bank energies for a given frame.
Sometimes, a LP modeling block is inserted at the end (like in PLP [8]).

LP speech spectral estimates are well established theoretically, since they are based on
the all-pole model of speech production. However, the theoretical foundations of the
above mentioned FBEs (from[3]) have not received much attention so far, in spite of
they have become a kind of standard in speech recognition. In [31] the authors show
that, assuming an uniform frequency scale, the FBEs come from a spectral estimator
that matches the multiwindow formulation introduced by Thomson in [37] and shows
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good statistical properties. In fact, it is equivalent, asymptotically and in terms of the first
and the second moments of the estimator, to the optimal multiwindow estimator that
uses orthogonal sinusoids as windows [25].

2.2 Use of voicing information to improve the robustness of the spectral
parameter set

In general, the effect of additive noise on the speech spectrum is more remarkable at
frequency bands or time segments where the speech spectrum shows low amplitude,
e.g. the between-harmonic valleys of voiced sounds and the whole band of unvoiced (or
silence) sounds.

If the spectrum is expressed in dB, the added noise relatively increases the spectral
values at those low-power spectral regions or time segments more than it does with the
high-power ones, so the amplitude contrast of the spectrum decreases along frequency
and also along its time evolution. However, the voicing information can be used to
restore that amplitude contrast up to some extent. This was the approach taken in [22],
where the character of each frame is introduced explicitly in the computation of the
FBEs by means of an exponent that depends on it.

Tests have been carried out for two training modes: clean speech training, and
multicondition training (i.e. the training corpus contains both clean and noisy speech
signals, for various noise conditions). The Aurora 1.0 database, that is being used for
developing the ETSI noisy speech Distributed Speech Recognition (DSR) standard
front-end [33] was employed in this work for testing the described exponentiation
techniques. This corpus consists of the Tl connected digit utterances, downsampled
from 20 kHz to 8 kHz, and with artificially added noises at the following SNR levels:
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clean, 20, 15, 10, 5, 0, and -5 dB. Four types of real noises have been used: hall,
babble, suburban train, and car. Noise conditions 0 and -5 dB are not used for training,
and an average word recognition accuracy for noisy speech is computed by considering
all the test conditions for noisy speech except -5 dB. The recognition system, which is
the one used for the above standardization work, is based on continuous density HMMs
with diagonal covariance matrices.

Significant recognition improvement was obtained when using static parameters alone
(without time derivatives) by employing any of two different exponentiation techniques.
By comparing both techniques, it was concluded that the predominant effect is the
enhancement of the amplitude contrast between voiced and unvoiced/silence segments
in the temporal sequences of spectral parameters.

2.3  Non-linear compression

To compute the speech parameters, non-linear processing is used in both axis of the
spectral representation. First, the bands are often distributed in a mel scale to mimic the
properties of the human auditory processing, giving less emphasis to the high-frequency
bands. And, secondly, non-linear operators are used to compress the large amplitude
range of spectral measurements, producing a distribution more similar to the Gaussian
one.

The most used non-linear operator is the logarithm which has the additional advantage
of converting a gain factor in an additive component in the feature space, which can be
easily removed. Although the logarithm is perhaps the most appropriate non-linear
operator for recognition of clean speech, it may no longer keep its advantage whenever
additive noise is present. Other reported non-linear operators, such as the root |E|* [1]
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or the lin-log log(1+JE) [10], where E denotes a spectral measurement (usually a FBE),
are alternative candidates to cope with the problem of parameterizing noisy speech.
Actually, both have a parameter which can be adapted to the SNR{I[38] or J [10].
Recently, both techniques were interpreted as masking procedures at spectral valleys
[14].

In the following, some aspects of the nonlinearly compressed spectrum of speech

when it is corrupted by additive white noise will be discussed. Assuming that the speech
signal and the noise are uncorrelated, the spectrum Ey (W) of a distorted speech frame

is the sum of both speech spectrum E(w) and noise spectrum N(w)

En (W)=EW)+N(W 1)

This additive property is not longer true when a non-linearity is applied to the speech
spectrum. When the logarithm is applied to the noisy speech spectrum, it follows that

log(E N ()= log(E(w) + N (w) = 10g(Ew)) + log(E w) + N(w))- Tog(E(w)] = log(E(w))+ Iog?%((v"—‘v'}% 2

The new noise term log(1+ N(w)/E(w)) becomes speech dependent so its statistics vary in

frequency and time according to the speech spectrum variations. We studied the noise
term distribution in a logarithmically compressed spectrum of a stationary segment of
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speech that was assumed to be deterministic (by adding different frames of white noise
to the center frame of a phoneme) [24].

Figure 2 shows the distribution of both the mean and the variance of the noise term in
the log FBE spectral estimation. The spectral valleys are more contaminated than the
spectral peaks. Let us show that this is a general fact by differentiating the noise term in
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Figure 2. 13 log FBE spectral representation of clean phoneme /e/ (the upper curve) and the
mean and variance distribution of its noisy term log(1+N(k)/E(k)) (the lower curve). E(K), N(k)

are the k-th band energies of speech and noise, respectively.
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The term in parenthesis, which is multiplied by the clean speech spectrum derivative, is
always negative for E(w),N(w)>0. This implies that the derivative of the noise term has

always an inverse sign to that of the derivative of the clean speech spectrum. Therefore,
where there is a local maximum/minimum in the clean speech spectrum, the noise term
has a local minimum/maximum, respectively, so spectral valleys are more affected by
noise than peaks. The same conclusion can be derived in the case of the root non-
linearity.

Consequently, by using a non-linearity that enhances peaks with respect to valleys
more than the logarithm does, more robust parameters may be obtained. With the root
non-linearity, the degree of compression of the input dynamic range can be controled by
the parameter. In [23], the behaviour of the root and log non-linearity functions was
investigated (along with that of two additional non-linearities: generalized logarithm and
lin-log) by using a quotient D of their derivatives at two points of the variable (the
spectral value): the first larger than the second. A higher quotient D means that for
larger spectral values the slope of the non-linearity is higher than for smaller spectral
values. The results are:

1. Those gquotients are independent on the considered dynamic range of spectral
values

2. Wheng® 1 then Dryy ® 1, and if g® 0 then Drogt ® Dy og
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3. Forall g7 (01), Droot >Diog

Based on our previous discussion and observing the last result, we can conclude that
the use of the root non-linearity can yield more robust parameters (and the same
conclusion can be reached for the generalized log and the lin-log). On the other hand,
the discrimination capability must be also considered. Actually, a g too high, which
seems to be a good robust solution, can cause the distribution of parameters is not
longer Gaussian-like and the recognition performance can decrease. Therefore, there
exists a trade-off in the g selection and g should be set up empirically by recognition

tests.

A trade-off is usually observed when comparing the differences in recognition
performance for clean and noisy speech either between two different values of the
control parameter or between two non-linearities. For example, a higher [ value is more
suited to speech contaminated with white noise, but it is less suited to clean speech
[24]. And the root can achieve better recognition results than the logarithm for white or
broad-band noises, whereas the log performs better than the root for clean speech or
speech-like noise [23].

3. Linear transformations of the spectral energies

The vector of Q log FBEs is linearly transformed in order that the feature vectors
supplied to the pattern matching stage are better adapted to the assumptions of the
HMM formalism and take more advantage from it. That vector undergoes at least two
kinds of linear transformations, one in the frequency domain and the other in the time




domain. In the next sections, both kinds of transformations will be discussed, and also
alternatives for improving the recognition performance will be proposed.

3.1 Thefrequency filtering (FF) technique

Usual HMMs assume that the acoustic observation vectors can be modeled by
Gaussian distributions with diagonal covariance matrices, i.e. they assume that the
elements of those vectors are uncorrelated. As the spectral measurements are strongly
correlated (e.g. the correlation coefficient of log FBEs of adjacent bands for the Tl digits
database [17] and Q=12 is 0.92 [29]), the parameterization front-ends require a linear
transformation that obtains a set of spectral parameters that are globally decorrelated.
Usually, a discrete cosine transform (DCT) is employed for that purpose. Due to its
closeness to the optimal K-L transform, the DCT is able not only to nearly decorrelate
the vector of logarithmically compressed FBEs but also to sort the transformed
coefficients in variance order. Then, the resulting vector is truncated to retain the
highest energy coefficients. It is the mel-frequency cepstral coefficients (MFCC)
representation, also called mel-cepstrum. That truncation actually represents an implicit
liftering operation with a rectangular lifter that smoothes the spectral envelope
represented by the frequency sequence of Q log FBEs S(k).

The cepstral coefficients show two important disadvantages for speech recognition:

1. They do not lie in the frequency domain, so lacking a frequency meaning which
may be useful, especially for implementing robust techniques.

2. As most current HMMs use Gaussian distributions with diagonal covariance
matrices and ML-estimated standard deviations, those HMMs can not benefit from
a cepstral weighting (liftering), since any multiplying factor that is applied to the
observations does not affect the Gaussian exponent calculation.
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An alternative set of speech parameters that avoids these disadvantages has been
recently presented by the authors [26]. This new parameter set is obtained with a very
simple linear transformation, called frequency filtering. Frequency filtering is a
transformation of the parameter vector that consists of a convolution between the
sequence S(k) of Q band log energies and a given (impulse response) sequence h(k) to
obtain a new sequence of Q filtered parameters F(k), k=1,...,Q, i.e.

F(k)=k)* h(k),k=1,...Q 4)

Notice that the filtered parameters F(k) still lie in the frequency domain, and only Q
values are computed. The sequence h(k) typically has order one or two, so the
computational burden is minimal. It is designed to fulfill a double requirement [26]: 1) to
decorrelate the parameters, and 2) to enhance their discriminative ability. As shown in
[26], decorrelation can be approximately obtained with a derivative-type filter of order
one which flattens the variance of the cepstral coefficients (the Fourier counterpart of
the log FBESs), since filtering in frequency is equivalent to weighting the cepstral
coefficients with the DFT of h(k), and the cepstral variance decreases along its index
according to an one-pole spectral shape.

It is known that this kind of weighting, that is referred to liftering, can improve
discrimination provided that it shows an increasing curve at least up to the 6th or 8"
cepstral coefficient. Actually, cepstral coefficients with middle indexes should be
emphasized since they correspond to the “formant rate”, i.e. the number of formants per
period in the frequency axis. Thus, the same filter that approximately decorrelates the
frequency sequence shows a liftering shape that can enhance discrimination.
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Thus, the impulse response h(k) may be designed to maximally flatten the variance of
the cepstral coefficients, or alternatively, its 1 or 2 coefficients may be empirically tuned
to obtain the best recognition results. However, the simple data-independent second
order filter H(z)=z-z* (i.e. h(k)={1,0,-1}) has shown a rather good performance for a
wide range of conditions. The two endpoints of the filtered sequence actually are
absolute energies, not differences, so the full-band energy may be neglected. In the FF
approach, the number of bands is the number of transformed parameters as well, so it
has to be carefully chosen.

It is worthing to note that the outputs F(k), k=2,...,Q-1 of such a derivative-type filter
actually are spectral slope measures and, according to Klatt, a phonetic distance based
on the spectral slope near the peaks correlates very well with perceptual data, unlike
other speech characteristics such as the FBE values or the linear prediction residual
[16].

Many recognition experiments have been performed in our laboratory during the last
years to assess the FF technique: for different speech recognition tasks (digit
recognition and acoustic-phonetic decoding [26][28], word spotting with phone units
[29]), for different noise conditions [12], for speaker recognition [11], and also using
features that were not obtained from an usual filter-bank but from LP modeling [26][12].
From the whole set of tests, it appears that FF generally offers better recognition
performance than MFCC.

Summarizing, we can conclude that frequency filtering is a simple and effective
operation that performs a combination of decorrelation and liftering, while still
maintaining the speech parameters in the frequency domain, so avoiding the above
mentioned drawbacks of cepstral coefficients. Note in particular that FF coefficients may




be especially useful whenever their frequency localization property is convenient. For
instance, to use them in a missing feature paradigm, like in [39].

3.2 Robusttemporal filtering and the modulation spectrum

The pattern-matching formalism based on HMM assumes that each acoustic
observation vector is uncorrelated with its temporal neighbors. This assumption can not
be fulfilled by the transformed vectors for the usual frame shifts (typically, 10 ms). That
has been the reason to justify the inclusion of smoothed time derivatives as additional
parameter vectors (they are also referred to as “dynamic” features [5]). Thus, not only
the first-order differential parameter vector but often the second-order one are
appended to the basic “static” vector (for the sake of simplicity of the explanation, we
will assume in the following that the global energy, if used, and its differences are
already included in the parameter vectors). These two new temporal sequences of
differential vectors are computed by filtering the basic time sequence of spectral
parameter vectors.

Filtering of each time sequence of spectral parameters (TSSP) has also been used for
robust speech recognition with another goal: to remove its d.c. and slowly variant
components when they are carrying undesired perturbations as linear distortion
(convolutional noise, additive in the log spectral domain). That is the aim of the cepstral
mean subtraction (CMS) technique [36] and it is what basically does the IIR filter with a
pole close to 1 that is used in the so-called RASTA processing[10].

The effect of temporal filtering (TF) can be better understood in the frequency domain.
The frequency counterpart of the frame index n is the modulation frequency q [13]. For

L
B e




this reason, the TSSP spectrum has been called modulation spectrum (MS) [6]. In [30],
from the analysis of the MS of filtered TSSP of clean speech, it was concluded that:

1. Each dynamic TSSP emphasizes a given band of meaningful modulation
frequencies. This effect is achieved with an approximate equalization of the static
MS in that band.

2. The modulation frequency bands of the various TSSP (static and dynamic) are
distributed along an interval of the modulation frequency axis in such a way that
the function that results from adding their MS is rather flat in that interval, which is
phonetically relevant and does not carry an excessive spectral estimation noise.

It is not a fact under discussion that time-filtered features are less affected by
convolutional noises than the static features, so that they can help the recognition
system to cope with mismatches between training and testing data. However, that is not
so clear for additive noises [7]. In [28], some recognition results were presented which
give further evidence that the dynamic features can be less affected than static features
by additive noises, provided that the time filters are properly designed, and that the
modulation spectrum gives useful insight for that filter design.

In the above mentioned work, filter design has been based on an experimental
approach; statistically optimal designs can be alternatively pursued, either based on a
linear discriminant analysis approach [2][9] or on a maximum likelihood approach [32].




3.3 Tiffing (TIme and Frequency Filtering)

Let us consider the two-dimensional (2-D) sequence of log FBEs S(k,n), where the
index k denotes the frequency band and the index n denotes the time frame. In the
above sections, we have presented filtering as being separately performed in the
dimensions k and n. However, the effect of filtering is remarkedly similar in both
dimensions. In fact, time and frequency filters show similar characteristics since both
perform a kind of smoothed derivative. Concretely, both the frequency filter and the time
filters used in this work can be viewed as the combination of three operations: 1)
removal (or severe attenuation) of the average value; 2) approximate variance or power
equalization in the transform domain (quefrency for k, or modulation frequency for n)
with a first-order high-pass FIR filter; and 3) smoothing of the resulting sequence with a
low-pass filter that shapes the (equalized) band. Additionally, the effects of both kind of
filters are not orthogonal; for example, the d.c. component of the 2-D time-frequency
sequence S(k,n) may be removed by both filters.

On the other hand, frequency-filtered log FBEs seem more able to benefit from temporal
filtering than cepstral coefficients [28]. These observations lead us to think that there is
something of a synergy effect between both types of filtering operations. Consequently,
both types of filters can be considered together as applied to a two-dimensional
frequency-time sequence, and the 2-D modulation spectrum (2D-MS) [19], can be
helpful for designing and analyzing them. Several recognition tests were performed for
the Tl single digits database and 10 dB white noise. The best results were achieved
using a different frequency filter for each time filter.

To conclude this section, let us mention a recent comparison between tiffing and the
usual MFCC parameterization (with delta time filters) in the framework or the Aurora
task mentioned in Section 2.2. The FF technique was used with Q=13 bands, so both




parameterizations use the same number of parameters (MFCC includes 12 cepstral
coefficients plus energy). The relative improvements of average accuracy rates were
found meaningful: 25,8% and 9,8% for clean and noisy recognition, respectively, in
comparison to the standard MFCC front-end. Furthermore, tiffing outperformed in
average terms the usual mel-cepstrum representation for every kind of noise and SNR.

ACKNOWLEDGEMENTS

The authors would like to thank to E. Batlle, F. Galindo, J. Mari, J.B. Marifio, P. Paches
and J. Padrell for their helpful comments and discussions. This work has been
supported by CICYT, projects TIC98-0683 and TIC98-0423-C06-01.

REFERENCES

[1] Alexandre P. & P. Lockwood. Root cepstral analysis: a unified view. Application to
speech processing in car noise environments. En Speech Communication, 12, 3,
277-288, 1993.

[2] Avendafio C., S. van Vuuren & H. Hermansky. Data based filter design for RASTA-
like channel normalization in ASR. En Proc. ICSLP, 2087-2090, 1996.

[3] Davis S. B. & P. Mermelstein. Comparison of parametric representations for
monosyllabic word recognition in continuously spoken sentences. En IEEE Trans.
on Acoustic, Speech and Signal Processing, ASSP-28, 4, 357-366, 1980.

[4]  ETSI SQL W1007,
http://webapp.etsi.org/WorkProgram/Report_Workltem.asp?WKI_ID=6400

[5] Furui, S. Speaker-independent isolated word recognition using dynamic features of
speech spectrum. En IEEE Trans. ASSP, Vol. 34, No. 1, pp. 52-59, 1986.

N



[6]
[7]

[8]

[9]

[10]
[11]
[12]
[13]
[14]
[15]
[16]

[17]

Greenberg, S. & B. E. D. Kingsbury. The modulation spectrogram: in pursuit of an
invariant representation of speech. En Proc. ICASSP, 3, 1647-50, 1997.

Hanson B. A., T. H. Applebaum & J. C. Junqua. Spectral dynamics for speech
recognition under adverse conditions. En C. H. Lee & F. K. Soong (eds.),
Advanced Topics in Automatic Speech and Speaker Recognition, Kluwer
Academic Publisher, Dordrecht, 1996.

Hermansky H. Perceptual linear predictive (PLP) analysis of speech. En J. Acoust.
Soc. Amer., 87, 4, 1738-1752, 1990.

Hermansky, H. Should recognizers have ears?. En Speech Communication, 25, 3-27,
1998.

Hermansky, H. & N. Morgan. RASTA processing of speech. En IEEE Trans. on SAP,
2,4,1-12,1994.

Hernando, J. & C. Nadeu. CDHMM speaker recognition by means of frequency
filtering of filter-bank energies. En Proc. Eurospeech, 5, 2363-2366, 1997.

Hernando, J. & C. Nadeu. Robust speech parameters located in the frequency
domain. En Proc. Eurospeech, 1, 417-20, 1997.

Houtgast, T. & H. J. M. Steeneken. A review of the MTF concept in room acoustics
and its use for estimating speech intelligibility in auditoria. En Journal of Acoustic
Soc. of America, 3, 77, 1069-77, 1985.

Hunt, M. J. Spectral signal processing for ASR. En Proc. Workshop ASRU, 1999.

Junqua J. C. & J-P. Haton. Robustness in Automatic Speech Recognition. Kluwer,
1996.

Klatt, D. H. Prediction of perceived phonetic distance from critical band spectra: A first
step. En Proc. ICASSP, 1278-81, 1982.

Leonard, R. G. A Database for speaker-indepemdent digit recognition. En Proc.
ICASSP, 3, 42-45, 1984.

A



[18]

[19]

[20]

[21]

[22]

[23]
[24]

[25]
[26]
[27]
[28]

[29]

Lockwood, P. & P. Alexandre. Root adaptive homomorphic deconvolution schemes
for speech recognition in noise. En Proc. ICASSP, 1, 441-444, 1994.

Macho, D. & C. Nadeu. On the interaction between time and frequency filtering of
speech parameters for robust speech recognition. En Proc. ICSLP, 1487-90,
1998.

Macho, D., C. Nadeu, J. Hernando & J. Padrell. Time and frequency filtering for
speech recognition in real noise conditions. En Proc. Workshop on Robust
Methods for Speech Recognition in Adverse Conditions, 111-114, 1999.

Macho, D., C. Nadeu, P. Jancovic, G. Rozinaj & J. Hernando. Comparison of time &
frequency filtering and cepstral-time matrix approaches in ASR. En Proc.
Eurospeech 1999, 1, 77-80, 1999.

Macho, D. & C. Nadeu. Use of voicing information to improve the robustness of the
spectral parameter set. En Proc. ICSLP, 2000.

Macho, D. PhD Thesis Dissertation, 2000.

Mari, J. Engineering Degree Project. ETSETB, Universitat Politecnica de Catalunya,
Barcelona, 1997.

Nadeu, C., F. Galindo & J. Padrell. On frequency averaging for spectral analysis in
speech recognition. En Proc. ICSLP, 3, pp 1071-74, 1998.

Nadeu, C., J. Hernando & M. Gorricho. On the decorrelation of filter-bank energies in
speech recognition. En Proc. Eurospeech, 1381-84, 1995.

Nadeu, C. & B. H. Juang. Filtering of spectral parameters for speech recognition. En
Proc. ICSLP, 1927-30, 1994.

Nadeu, C., D. Macho & J. Hernando. Time & frequency filtering of FBEs for robust
HMM speech recognition. (In press). 2000.

Nadeu, C., J. B. Marifio, J. Hernando & A. Nogueiras. Frequency and time filtering of
filter-bank energies for HMM speech recognition. En Proc. ICSLP, 430-433,
1996.




[30]

[31]
[32]
[33]
[34]

[35]
[36]

[37]
[38]

[39]

[40]

Nadeu, C., P. Paches-Leal & B. H. Juang. Filtering the time sequence of spectral
parameters for speech recognition. En Speech Communication, 22, 315-322,
1997.

Nadeu, C., J. Padrell & I. Esquerra. Frequency averaging: an useful multiwindow
spectral analysis approach. En Proc. ICASSP, 3953-56, 1997.

Pachés-Leal P., R. C. Rose & C. Nadeu. Optimization algorithms for estimating
modulation spectrum domain filters. En Proc. Eurospeech, 1, 89-92, 1999.

Pearce, D. Experimental Framework for the Performance Evaluation of Distributed
Speech Recognition Front-Ends, Aurora project report, Version 1, Sept., 1998.

Picone, J. W. Signal modeling techniques in speech recognition. En Proc. of the
IEEE, 79, 4, 1214-1247, 1991.

Rabiner, L. & B. H. Juang. Fundamentals of Speech Recognition. Prentice Hall, 1993.

Rosenberg, A. E., C.-H. Lee & F. Soong. Cepstral channel normalization techniques
for HMM-Based speaker verification. En Proc. ICSLP, 1835-9, 1994.

Thomson, D. J. Spectrum estimation and harmonic analysis. En Proc. of the IEEE,
70, 9, 1055-1096, 1982.

Tian, J. & O. Viikki. Generalized cepstral analysis for speech recognition in noise. En
Proc. Eurospeech, 87-90, 1999.

Veth J. de, F. de Wet, B. Cranen & L. Boves. Missing features theory in ASR: make
sure you miss the right type of features. En Proc. Workshop on Robust Methods
for Speech Recognition in Adverse Conditions, 231-4, Tampere, 1999.

Young, S., J. Jansen, J. Odell, D. Ollason & P. Woodland. The HTK Toolkit.




	tausta: 
	siguene: 
	atras: 
	salir: 
	buscar: 
	index_general: 
	index_A: 


