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Abstract 

The performance of the existing speech recognition systems degrades rapidly in the presence of background noise. A 
novel representation of the speech signal, which is based on Linear Prediction of the One-Sided Autocorrelation sequence 
(OSALPC), has shown to be attractive for noisy speech recognition because of both its high recognition performance with 
respect to the conventional LPC in severe conditions of additive white noise and its computational simplicity. The aim of 
this work is twofold: (1) to show that OSALPC also achieves a good performance in a case of real noisy speech (in a car 
environment), and (2) to explore its combination with several robust similarity measuring techniques, showing that its 
performance improves by using cepstral liftering, dynamic features and multilabeling. 

R&urn6 

Les performances des systkmes actuels de reconnaissance de parole se dCgradent rapidement en prksence de bruit. Une 
nouvelle reprksentation du signal de parole, basee sur la p&diction lintaire de sCquence d’autocorr6lation unilat&ale 
(One-Sided Autocorrelation Linear Prediction: OSALPC), s’est av&6e &tre inGressante pour la reconnaissance de la parole 
bruitie, B la fois pour ses bonnes performances (par rapport au codage LPC conventionnel) dans des conditions diffciles de 
bruit blanc additif et pour sa simplicid de calcul. Le but du travail pr&ent6 dans cet article est double: (1) il s’agit de 
montrer que OSALPC foumit Cgalement de bonnes performances pour de la parole bruitie en contexte r6el d’usage (en 
voiture), et (2) d’explorer sa combinaison avec diverses techniques robustes de mesure de similar@ en montrant que ses 
performances s’amCliorent en utilisant une ponderation cepstrale, des indices dynamiques et l’itiquetage multiple. 
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1. Introduction 

remains an unsolved problem isolated woid 
recognition develop a system that operates robustly and reliably 
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presence of noise, many techniques have been proposed in the literature (Juang, 1991) for reducing noise in 
each stage of the recognition process, particularly in feature extraction and similarity measuring. 

Regarding the parameterization stage, a spectral estimation technique widely used in speech recognition is 
Linear Predictive Coding (LPC) (Itakura, 1975), which is equivalent to AR modeling of the speech signal. 
Concretely, it has been shown that the use of the liftered LPC-cepstral coefficients in the conventional Euclidean 
distance measure leads to the best results of those obtained with this model (Juang et al., 1987). However, the 
conventional LPC technique is known to be very sensitive to the presence of additive noise. This fact leads to 
poor recognition rates when this technique is used in speech recognition under noisy conditions, even if only a 
moderate level of contamination is present in the speech signal. 

Linear prediction of the autocorrelation sequence has been the common approach to several robust spectral 
estimation methods for noisy signals presented in the past. For speech recognition, Mansour and Juang (1989a) 
proposed the Short-time Modified Coherence (SMC) as a robust representation of speech based on that 
approach. On the other hand, Cadzow (1982) introduced the use of an overdetermined set of Yule-Walker 
equations for robust modeling of time series. Although Cadzow applies linear prediction to the signal, his 
method can also be interpreted as performing linear prediction in the autocorrelation domain. Both methods rely, 
either explicitly or implicitly, on the fact that the autocorrelation sequence is less affected by broad-band noise 
than the signal itself, especially at high lag indices. 

Recently, as an alternative representation of speech signals when noise is present, the authors proposed a 
parameterization technique called One-Sided Autocorrelation Linear Predictive Coding (OSALPC) (Hernando et 
al., 1992). In this work, the causal part of the autocorrelation sequence and its mathematical properties are 
considered. As this sequence shares its poles with the signal x(n), it provides a good starting point for LPC 
modeling. Also, it is closely related to the SMC representation and Cadzow’s method. All of them can be 
interpreted as AR modeling of either a spectral function named “envelope” or its square. This interpretation, 
which is based on the properties of the one-sided autocorrelation, provides more insight into the various 
methods. As shown in (Hemando et al., 19921, the use of OSALPC in noisy speech recognition is attractive 
because of both its high recognition performance with respect to conventional LPC in severe conditions of 
additive white noise and its computational simplicity. 

The aim of this work is twofold: (1) to show that OSALPC also achieves good performance in a case of real 
noisy speech (in a car environment), and (2) to explore its combination with several robust similarity measuring 
techniques, showing that its performance improves by using filtering of spectral parameters - cepstral liftering 
(Juang et al., 1987; Hanson and Wakita, 1987; Tohkura, 1987) and differential parameters (Furui, 1986) - and 
multilabeling (Hemando et al., 1993). 

The paper is organized in the following way. In Sections 2 and 3 the OSALPC parameterization and the 
robust similarity measuring techniques that are considered in this work are briefly reviewed (for more 
information see (Hemando, 1993)). Section 4 is dedicated to show the experimental results obtained by applying 
these techniques, both separately and in combination, to recognize isolated words in a real noisy car 
environment, in a multispeaker task, using a speech recognition system based on the Hidden Markov Model 
(HMM) and Vector Quantization (VQ) approaches and trained in clean conditions. Finally, in Section 5 some 
conclusions are summarized from those results. 

2. OSALPC representation 

From the autocorrelation sequence R(m), we define the one-sided autocorrelation (OSA) sequence R+(m) as 
its causal part in the following way: 

R+(m) = 

i 

R(m) m > 0, 

R(O)/2 m = 0, (1) 

0 In co, 
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which verifies 

R(m) =R+(m)+R+(-m), --oo<rn<m. 

Its Fourier transform is the complex “spectrum” 

(2) 

S+(w) =t[s<w) +jSn(o)], (3) 

where S(o) is the real spectrum of the signal, i.e. the Fourier transform of R(m), and S,(o) is the Hilbert 
transform of S(o). 

Due to the analogy between S+(w) in Eq. (3) and the analytic signal used in amplitude modulation, a 
spectral “envelope” E(w) (Lagunas and Amengual, 1987) can be defined as 

E( w> = IS’( w)l, 

whose square, the squared envelope, is the spectrum of the OSA sequence. 

(4) 

Fig. 1 shows that the speech spectral envelope E(o) strongly enhances the highest power frequency bands 
with respect to S(w). This may be due to the large dynamic range of speech spectra. Consequently, in noisy 
speech signals the noise components lying outside the enhanced frequency bands are largely attenuated in E( w> 
with respect to S(w), and thus E(o) is more robust to broad-band noise than S(o). This robustness to 
broad-band noise can be viewed in the time domain: the OSA sequence, whose spectrum is the squared spectral 
envelope E*(o), is less affected by broad-band noise than the signal itself, especially at high lag indices. This 
idea of enhancing spectral peaks relative to spectral valleys has been already used in order to improve 
robustness to noisy conditions: weighted distortion measures (Matsumoto and Imai, 19861, root cepstral analysis 
(Alexandre and Lockwood, 1993), etc. 

On the other hand, as is well known, the OSA sequence R+( m> and the signal x(n) have the same poles 
(McGinn and Johnson, 1983). Those two properties, i.e. robustness to broad-band noise and pole preservation, 
suggest that AR parameters of the speech signal can be more reliably estimated from the OSA sequence than 
directly from the signal x(n) when x(n) is corrupted by broad-band noise. Thus, as the conventional LPC 
technique assumes an all-pole model of the speech spectrum S(w), we may apply linear prediction to the OSA 
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Fig. 1. Spectrum (top graph) adn its squared envelope (bottom graph) of a voiced speech frame in noise free conditions. 
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sequence, assuming an all-pole model for its spectrum E*(w). This is the basis of the OSALPC (One-Sided 
Autocorrelation Linear Predictive Coding) parameterization technique proposed in (Hemando et al., 1992) as a 
robust representation of speech signal when noise is present. 

A straightforward algorithm is proposed to calculate the OSALPC cepstrum coefficients, that consists in 
applying the (windowed) autocorrelation method of linear prediction to an estimation of the OSA sequence (see 

block diagram in Fig. 2): 
(a) Firstly, from the speech frame of length N the autocorrelation lags until M = N/2 are estimated (this 
value of M was empirically optimized to consider the well known tradeoff between variance and frequency 
resolution of the spectral estimate). 
(b) Secondly, the Hamming window from m = 0 to M is applied to such estimated OSA sequence. 
(c> Thirdly, if p is the prediction order, the first p + 1 autocorrelation values of that OSA sequence are 
computed from m = 0 to p using the conventional biased estimator, i.e. the one that is commonly employed 
in speech processing. 
(d) Then these values are used as entries to the Levinson-Durbin algorithm to estimate AR parameters ak, 
k = 1,. . . ,p. 

(e) Finally, the cepstral coefficients corresponding to the model are recurrently computed from those AR 
parameters. 

The robustness of OSALPC to additive white noise is illustrated in Fig. 3. As can be seen in this figure, the 
OSALPC squared envelope shows a prominent first formant and its whole curve is more robust to additive 
white noise than that of the LPC spectrum. In this case, the conventional biased autocorrelation estimator was 
used to compute the OSA sequence from the signal. 

Fig. 3 also shows that spurious peaks may appear in the OSALPC squared envelope. Probably, they are due 
to the fact that the OSALPC technique performs only a partial deconvolution of the speech signal. However, in 
spite of that, it shows a better speech recognition performance than conventional LPC in severe conditions of 
additive white noise (Hemando et al., 1992). 

The Short-Time Modified Coherence @MC) technique (Mansour and Juang, 1989a) is also based on AR 
modeling in the autocorrelation domain. However, whereas in the OSALPC technique the entries to the 

SIGNAL 

6 AUTOCORRELATION 

CEPSTRUM 

+ 
OSALPC CEPSTRUM 

Fig. 2. Block diagram for the calculation of the OSALPC cepstrum. 
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Fig. 3. Robustness of the OSALPC represetnation to additive white noise: LPC spectrum (top graph) and OSALPC squared envelope 

(bottom graph) of a voiced speech frame in noise free conditions (solid line) and SNR equal to 0 dB (dotted line). 

Levinson-Durbin algorithm (the first p values of the autocorrelation of the OSA sequence) are calculated from 
the OSA sequence using the classical biased autocorrelation estimator, in the SMC representation they are 
computed using a square root spectral shaper. In fact, in terms of the above formulation, that difference lies in 
assuming in the SMC technique an all-pole spectral model for the envelope E(w) instead of E*(w). 

On the other hand, the name of the Short-Time Modified Coherence representation derives from the usage of 
a particular estimator, which is referred to as coherence in (Mansour and Juang, 1989a), to compute the OSA 
sequence from the signal. This estimator is a more homogeneous measure than the conventional biased 
autocorrelation estimator in the sense that every estimated value is computed using the same number of signal 
samples, whereas in the conventional estimator the number of signal samples employed to estimate R(m) 

decreases along the index m. That property does not have much relevance in the estimation of the autocorrela- 
tion entries to the Levinson-Durbin, since only the first p + 1 values are considered and usually p -=K N. 
However, it may be important in the estimation of the OSA sequence from the speech signal since the OSA 
length considered in both OSALPC and SMC techniques is M = N/2, not negligible with respect to N. 

The OSALPC technique was compared in a previous work (Hemando et al., 1992) with both the 
conventional LPC and the SMC techniques, using speech signals that included additive white noise. In those 
tests, the OSALPC technique outperformed the other two for low SNR using the conventional biased estimator 
to compute the OSA sequence from the signal. In the present work, OSALPC was implemented using the 
coherence estimator, since we observed a slight improvement by using it instead of the biased estimator for 
clean speech and moderate levels of additive white noise. Actually, with the coherence estimator, the OSALPC 
representation achieved in our experiments better results than the SMC representation for every tested SNR, 
including clean speech (Hemando, 1993). 

On the other hand, OSALPC is also closely related to the overdetermined set of Yule-Walker equations 
proposed by Cadzow (1982) to seek ARMA models of time series. Since an AR(p) process contaminated by 
additive white noise becomes an ARMA(p,p) process with the same poles as the AR(p) process, Cadzow’s 
method can be used to estimate the parameters of this noisy AR process, just by setting the same AR and MA 
orders in the so called Least Squares Modified Yule-Walker Equations (LSMYWE) (Marple, 1987). 
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The relationship between OSALPC and LSMYWE techniques is illustrated by the matrix equation 

OSALPC 

R(1) 
R(2) 

R( P) R(P- 1) R(P-2) 

R(p+ 1) R( P) R( P - 1) 

R(pf2) R(P+ 1) R( P) 

R(M) R(M- 1) R(M-2) 

0 R(M) R(M- 1) 

0 0 R(M) 

e(p+ 
e(p+ 

e(M+ 1) 

e( M + 2) 

e(M+p) 

0 

R(l) 
0 

0 

0 

. . . R(M-P) 

. . . R(M-p+ 1) 

. . . R(M-p+2) 

. . . 
RGf) 

i 

1 

al 

a2 

. . . 

UP 

(5) 

L 

where M denotes the highest autocorrelation lag used and e(m) is the error to be minimized. The minimization 
of the norm of the full error vector {e(m)},= i, _, ,M+p with respect to the AR parameters ak is equivalent to the 
application of the (windowed) autocorrelation method of linear prediction to the sequence R(m), m = 1, . . . , M, 
that is the OSALPC technique. On the other hand, the LSMYWE technique minimizes the norm of the 

subvector {e(m)1,=,+,....., and so it amounts to applying the (unwindowed) covariance method of linear 
prediction upon the same range of autocorrelation lags. When M = 2p, LSMYWE are the Modified Yule-Walke 
Equations (Marple, 1987) for an ARMA(p,p) process. In both OSALPC and LSMYWE, only autocorrelation 
lags corresponding to the OSA sequence are employed. The only difference between both techniques is the 
range of error values considered in the minimization. 

In spite of the similarity between all these techniques, the OSALPC representation outperforms the 
LSMYWE and SMC techniques in speech recognition for low SNRs of additive white noise (Hernando et al., 
1992). On the other hand, as far as the computational complexity of the algorithms is concerned, OSALPC and 
SMC techniques are much more efficient than the LSMYWE technique because they use the Levinson-Durbin 
algorithm. 

Finally, it is worth noting that the OSALPC technique may be included in the field of higher-order spectral 
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estimation, due to the fact that the squared envelope E*(w) is the Fourier transform of the autocorrelation of the 
OSA sequence, that is a particular fourth-order moment of the signal. 

3. Robust similarity measuring techniques 

This section is devoted to briefly review several robust similarity measuring techniques that are used in the 
recognition experiments reported in Section 4. Herewith, the term similarity measuring techniques is used in a 
wide sense; it not only includes distance measure techniques between vectors of cepstral parameters, as the 
Euclidean or the projection distance (Section 3.31, but also other related techniques which are also used in the 
comparison stage of the recognition system, as filtering of spectral parameters (Section 3.1) or multilabeling 
(Section 3.2). 

3.1. Filtering spectral parameters 

The parametric representation of a speech utterance consists of a sequence of vectors, one per frame, whose 
components usually are some kind of cepstral coefficients. That two dimensional sequence is entered to the 
pattern matching stage of the speech recognition system where it is classified using a given set of patterns or 
models and an Euclidean-type measure of similarity. 

In recent years, speech researchers have found out that the discrimination capacity of the classifier can be 
strongly enhanced by properly processing the two dimensional spectral representation. This is done in the 
quefrencial dimension by means of cepstral liftering (Juang et al., 1987), and in the temporal dimension by 
means of the so-called dynamic features or differential parameters (Furui, 1986). 

On the one hand, cepstral liftering actually involves filtering the log spectrum in the sense of performing a 
periodic convolution of it with the Fourier transform of the cepstral window or lifter. On the other hand, each 
differential parameter can be envisioned as the output of a linear filter driven by the time sequence of a cepstral 
coefficient (or any other spectral parameter) where each sample corresponds to a frame. Thus, both types of 
processing can be interpreted from a filtering viewpoint in either frequency or time, and the frequencial analysis 
of that filtering operation permits to gain an useful insight into their performance (Nadeu and Juang, 1994). In 
this sense, these parameters can be referred to as filtered parameters. 

Every filter used so far in the frequency dimension (or, analogously, in the time dimension) shows band-pass 
characteristics. Furthermore, it has two basic components: (1) a differentiation component, that corresponds to a 
kind of high-pass liftering (or filtering), and (2) a smoothing component that performs a low-pass liftering (or 
filtering). The differentiation component produces an augmentation of the frequency (or time) resolution - in 
the sense of a dynamic amplification - of the spectrum. The smoothing component of the filter attenuates the 
likely unreliable high quefrency (or frequency) components. Consequently, we can interpret that filtering as 
changing the tradeoff between frequency (or time) resolution and error power of the spectral estimation process 
involved in the parameterization, in order to enhance the discrimination capability of the speech recognizer. 

The order of the LPC model is another parameter that allows to control the same kind of tradeoff, since an 
increased order may yield a higher frequency resolution of the speech representation, but may also produce an 
augmentation of the spectral estimation error. When the speech signal is noisy, the tradeoff may depend on its 
SNR and the noise characteristics. 

Three different cepstral lifters are considered in our experiments: 

Bandpass: 

Slope : 

L 7rn 
w(n)=l+Tsin 7 ; 

! 1 

w(i2) = n; (6) 
1 

Inverse of standard deviation: w(n) = -; 
at(n) 
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where n = 1,. . . ,L, and ac(,,) is the standard deviation of the ntb cepstral coefficient c(n). If p denotes the 
prediction filter order, the value of L is typically 3p/2 for the bandpass lifter (Juang et al., 19871, and p for 
both the slope lifter (Hanson and Wakita, 1987) and the inverse of the standard deviation lifter (Tohkura, 1987). 

Probably the most common version of time filtered parameter is the so-called regression coefficient or 
delta-cepstrum (Furui, 1986). Its associated impulse response is the first degree discrete Legendre polynomial, 
i.e., 

-N<nlN, 
elsewhere. 

In our work, we applied this filter to the time sequences of cepstral coefficients to obtain for each frame a 
vector of filtered parameters that supplements the cepstral vector. The filtered energy (delta-energy) was also 
considered in some experiments. The length 2 N + 1 of its impulse response was varied to empirically optimize 
it. 

3.2. Multilabeling 

In the Discrete Hidden Markov Model (DHMM) approach, the conventional VQ technique is applied. For 
each incoming vector the quantizer performs a hard decision about which of its codewords is the best match, 
and so the information about how the incoming vector matches other codewords is discarded (Tseng et al., 
1987). When the speech is corrupted by noise, the vector of parameters can be displaced in such a way that the 
best match is achieved with a different codeword from that one of clean speech. The random character of that 
displacement is a potential source of misrecognition. 

Unlike the conventional VQ, multilabeling makes a soft decision about which codeword is closest to the 
input vector, generating an output vector whose components indicate the relative closeness of each codeword to 
the input. 

Let the codewords of the multilabeling codebook be {v~)~= t,,..,=, where C is the codebook size, and let the 
liftered cepstral vector in the instant t be x,. The multilabeling codebook used in this work (Hernando et al., 
1993) maps the input vector X, into an output vector 0, = {w(x,,v,)),=,,,,,,,, whose components are calculated 
with 

l/4 x,4 
4X,&) = c t (8) 

c 1/4xt,vm) 
m=l 

where d(x,,uk) is the distance between uk and x,. These components are positive, their sum is 1 and they 
decrease with d(x,,vk). Thus, they provide a heuristic measure describing the likelihood that the input vector X, 
would be derived from the class represented by the codeword vk. Under the standard DHMM approach, 
w(x,,v~) would take value 1 for the codeword with the best match and value 0 for the rest. 

The DHMM algorithms must be generalized to accommodate this multilabeling output. For a given state j of 
the HMM, the probability that a vector x, is observed can be written as 

bj(xt) = f W(Xc,Uk)bj(k)v 
k= 1 

(9) 

where bj(k) denotes the discrete output probability associated with the codeword vk and the state j. 
Forward-backward and Viterbi algorithms are simply generalized using Eq. (9) instead of bj(k). With 

respect to the training problem, Baum-Welch reestimation formulas for the transition probabilities aij and 
initial state probabilities ni are generalized in the same manner. 
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Regarding the reestimation of b,(k), the maximum likelihood estimation leads to the following formula for a 
training sequence of length T: 

,$ ar( j)P,( j) J-t)bJ(k) 

c W(v%)bj(k) 

b;(k) = 
k=l 

l? ~,(M(i) ’ 

(10) 

f= 1 

where al(j) and p,(j) are, respectively, the well known forward and backward probabilities, and T is the 
utterance length. In Eq. (10) bi( k) receives the contribution of the probability a,(j)&(j) (probability of being 

in the state j at the time t) weighted by 

w(x,Tu,)bj(k) 

5 W(Xt~vk)bj(k) 

(11) 

k= 1 

This weight can be interpreted as the normalized contribution of the codeword vk to the observation probability 

bj(X,). 
Nevertheless, better speech recognition scores were obtained just by using the reestimation formula 

(Hemando, 1993): 

5 o,(j>P,(j)w(x,,r+) 

b;(k) = ‘=’ T 

C 4j>P,(j) ’ 

(12) 

t= 1 

Under this new formulation, the probability ,,(j)&( j) contributes to bT( k) according to the heuristic likelihood 
w(x,,v~). Actually, this is the reestimation formula employed in the experiments reported in this work. 

The application of Eq. (12) leads to output probability distributions smoother than ones corresponding to the 
application of Eq. (10). The output probabilities of DHMM present an intermediate degree of smoothing. In fact, 
Eq. (12) can be interpreted as a distance-based smoothing technique (Sugawara et al., 1985) of discrete output 

probabilities, where the window w(x,,u~) has been adapted to each codeword. 
Although Eq. (12) does not guarantee the convergence of the training process, in practice its use decreases 

the required number of iterations because Eq. (12) reduces the dependence on previous values of the output 
probabilities b,(k). Furthermore, Eqs. (8) and (9) can be simplified using only the K most significant values of 
w(x,,v~) for each x,, where K is lower than the codebook size C. The corresponding reductions in 
computational load make the MultiLabeling Hidden Markov Model (MLHMM) approach extremely efficient. 

The presented multilabeling method is similar to those described in (Tseng et al., 1987) and (Nishimura and 
Toshioka, 1987). The main discrepancies with respect to them are the possibility of using any distance measure 
between cepstral vectors - i.e. Euclidean or projection - in Eq. (8) the alternative generalization of HMM 
algorithms (Eq. (12)) and the simplification of Eqs. (8) and (9) by using only the K closest codewords. 

The SemiContinuous HMM approach (SCHMM) (Huang, 1992) also is closely related to the multilabeling 
approach. However, the components of the output vector w(x~,Y,), that are estimated from an heuristic 
viewpoint in the multilabeling method, are estimated from a stochastic viewpoint in the SCHMM. Concretely, 
whereas in the multilabeling approach the codewords are the centroid (mean) of each cluster, in the 
semicontinuous approach, the codebook is modeled as a parametric family of mixture Gaussian densities, 
characterized by the mean and the variance of each cluster. 
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The recognition rates obtained with both MLHMM and SCHMM approaches are similar and outperform 
considerably those obtained using DHMM, both in clean conditions and in the presence of additive white noise 
(Hernando et al., 1993). 

3.3. Cepstral projection distance 

If it is known that the reference and test signals have different degrees of noise corruption, there is no 
obvious reason to maintain the symmetry characteristics of the conventional Euclidean distance on the liftered 
cepstral vectors, commonly used in speech recognition. 

Analytical derivations and empirical observations performed by Mansour and Juang (1989b) revealed that the 
major mismatch between clean and noisy LPC-cepstral vectors, in the case of additive white noise, is the 
shrinkage of norms. They also observed that cepstral vectors with higher norm are less affected than cepstral 
vectors with lower norm and that the angle between two cepstral vectors is less sensitive than the traditional 
Euclidean distance. Those considerations led them to propose a family of cepstral projection distances for noisy 
speech recognition. 

Using a speech recognition system based on the Dynamic Time Warping (DTW) approach, the best results 
(Mansour and Juang, 1989b) were obtained using 

CC, 
d,=(C,I(l -cosfl) =ic,I- m~ 

r 
(13) 

where C, and C, are the liftered cepstral column vectors of the test and reference templates being compared in 
one step of the DTW algorithm, /3 is the angle between them, 1.1 denotes norm and T denotes transposition. 

This projection distance is used in some experimental results reported in Section 4. In these experiments, an 
HMM-VQ recognition system is used. In such a system, when the projection distance of Eq. (13) is chosen, a 
problem arises during the codebook training process since a closed formula has not been derived to compute the 
centroid that minimizes the global distortion of a cluster. In our tests, we used as centroid the mean of the 
distribution (that minimizes the global distortion in the case of Euclidean distance) since it yielded good results 
in preliminary recognition experiments with additive white noise (Hernando and Nadeu, 1991). 

4. Experimental results 

This section reports the experimental results obtained by applying the OSALPC representation and all the 
similarity measuring techniques reviewed in Section 3, both separately and in combination, to recognize isolated 
words in a real noisy car environment, in a multispeaker task, using an HMM-VQ recognition system and 
training in clean conditions (Hemando and Nadeu, 1994). 

4.1. Database and recognition system 

The database used in the experiments comes from the ESPRIT-ARS project and consists of 25 repetitions of 
the Italian digits uttered by 4 speakers, 2 males and 2 females, seated in the passenger’s seat. The signals were 
recorded through a back-electret microphone that was centered on the passenger’s sunvisor in different noisy 
conditions: 5 repetitions with the engine and the fan off and 20 more with the engine on and different fan 
positions, of which 10 with the car stopped, 5 with the car running at 70 km/h and 5 with the car running at 
130 km/h. The average SNR values for each of the different conditions were 12, 15 and 2 dB for 0 (car 
stopped, engine on), 70 and 130 km/h, respectively. In all conditions, the car noise is not flat (Lecomte et al., 
1989), but it does not show any periodicities: it is broad-band noise. The system was trained with the signals 
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uttered when the engine and the fan were off, i.e., in noise free conditions, and the noisy signals were used for 
testing. 

The analog speech signal was sampled at 8 kHz and 12 bits quantized. Then the digital signal was manually 
endpointed and preemphasized with I - 0.95 Z- ‘. In the parameterization stage, the signal was divided into 
frames of 30 ms at a rate of 15 ms and each frame was characterized by L liftered cepstral parameters, obtained 
either by the conventional LPC method or the new OSALPC technique. In some tests, the time filtered 
parameters of the frame were also obtained. Each information was separately vector-quantized using a codebook 
of 64 codewords by means of either conventional VQ or the multilabeling method, with either the conventional 
Euclidean distance or the new cepstral projection distortion measure. Each digit was characterized by a 
first-order, left-to-right, hidden Markov model of 10 states without skips. Training and testing were performed 
using Baum-Welch and Viterbi algorithms, respectively. 

4.2. Recognition results 

The first experiments carried out with the above described speech recognition system consisted in empirically 
optimizing the model order and the type of cepstral lifter using the cepstral Euclidean distance upon the cepstral 
vectors and conventional VQ. Preliminary recognition results in noise free conditions showed that neither the 
model order nor the type of cepstral lifter are relevant for our task. 

However, in the presence of noise the recognition results are very sensitive to the model order and the type of 
cepstral lifter. The results can bee seen in Table 1, for conventional LPC, and in Table 2, for the novel OSALPC 
representation. In both cases, the results are shown in terms of the car speed, for model order p equal to 8, 12 
and 16, and for bandpass, slope and inverse of standard deviation (ISD) lifters. 

The best results were obtained using prediction order equals to 16 and either the ISD lifter for the 
conventional LPC or the slope lifter for the OSALPC technique, i.e. a relatively high prediction order and a 
non-symmetrical cepstral lifter for both kinds of parameterization. It is worth noting that, although the average 
SNR value when the car is running at 70 km/h is a little higher than SNR with the car stopped (engine on>, the 
recognition rates are worse when the car is running. This may be explained by the different articulatory effects 
due to the environment. 

In Fig. 4, recognition rates obtained using these optimum orders and lifters are compared, in terms of car 
speed, with those obtained using prediction order equal to 8 and bandpass lifter. Notice that the results are very 
sensitive to those factors, and that relatively high prediction orders and non-symmetrical cepstral lifters are 
clearly preferable in noisy conditions. It can also be seen that, using the optimum orders and lifters, OSALPC 
noticeably outperforms LPC in severe noisy conditions. 

Table 1 
Recognition rates using LPC-ceostrum for several mediction orders and lifters 

Order Lift./speed 0 70 130 

8 Bandpass 93.7 88.9 58.2 
Slope 93.2 85.1 59.7 

ISD 93.0 84.5 61.2 

12 Bandpass 96.7 93.9 71.0 
Slope 93.2 91.4 75.2 
ISD 95.2 84. I 60.0 

16 Bandpass 90.7 86.1 66.2 
Slope 92.7 85.6 72.0 
ISD 97.5 92.1 79.0 
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Table 2 
Recognition rates using OSALPC-cepstrum for several prediction orders and lifters 

Order Lift./speed 0 70 130 

8 Bandpass 91.2 83.4 11.1 

Slope 91.7 85.1 68.0 

ISD 93.5 82.6 72.2 

12 Bandpass 96.7 89.3 14.5 

Slope 91.0 87.1 76.2 

LSD 95.5 87.9 71.2 

16 Bandpass 92.1 85.5 69.7 

Slope 96.0 94.6 85.0 

ISD 95.5 91.2 80.7 

Regarding the time filtered parameters, the use of delta-cepstrum (AC) and delta-energy ( AE), in the case of 
the conventional LPC parameterization, and the use of delta-cepstrum, in the case of the OSALPC technique, 
provided excellent results. The best results were obtained using a window length of 240 ms for the estimation of 
filtered parameters. 

On the other hand, the recognition rates obtained with both MLHMM and SCHMM approaches were similar 
and outperformed considerably those obtained using DHMM. In particular, MLHMM approach using the 
reestimation Eq. (12) led to slight better results than SCHMM ones, with lower computational load. Because of 
this fact, that approach was used in final recognition experiments. 

It is worth noting that in both MLHMM and SCHMM approaches, the parameters of the codebook and the 
models can be jointly optimized to achieve an optimal model/codebook combination. When this mutual 
optimization of models and codebook is made, the various cepstral lifters have almost no effects on the 
SCHMM performance since SCHMM adjust to any kind of liftering by modifying the variance estimates. 
However, this mutual optimization has not been considered in this work because of its computational 
complexity. In this case, the various cepstral lifters affect the performance of both MLHMM and SCHMM 
approaches. 

80 

60 

0 70 130 
km/h 

Fig, 4. Optimization of prediction order and cepstral liftering in LPC and OSALPC techniques. 
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Fig. 5. Comparison of several combinations of techniques. 

Finally, the results obtained using the cepstral projection distance were not better than those obtained 
applying the Euclidean distance. When the optimum prediction order and cepstral lifter for each parameteriza- 
tion technique were used, the recognition rates using the projection distance were 95.2, 88.9 and 67.2% - for 
speeds of 0, 70 and 130 km/h, respectively -, in the case of conventional LPC, and 95.5, 93.3 and 77.2%, in 
the case of the OSALPC representation. 

The combination of all these techniques, except the cepstral projection distance measure, provided even 
better results than those obtained applying each technique separately. In Fig. 5, recognition rates obtained with 
optimum orders and lifters are compared in terms of the employed kinds of parameterization - LPC or 
OSALPC - and vector quantization - conventional VQ in discrete (D) HMM or multilabeling (ML) -, with or 
without time filtered parameters (A). The various combinations of techniques have been ordered taking into 
account the recognition rates obtained in severe noisy conditions. 

As can be observed in Fig. 5, when no delta-parameters are used the OSALPC technique obtains excellent 
results in severe noisy conditions, but the conventional LPC technique results are better than OSALPC results 
when the car is stopped. However, using delta-cepstrum, OSALPC outperforms LPC in all the considered 
conditions. The best results are obtained using OSALPC parameterization, delta-cepstrum and multilabeling. 

5. Conclusions 

From the application of the OSALPC parameterization in combination with several robust similarity 
measuring techniques to speech recognition in a real noisy car environment with an HMM-VQ system, some 
conclusions can be summarized. 
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(a) The cepstral representation based on linear prediction of the one-sided autocorrelation sequence 
(OSALPC) has shown to be attractive because of both its high recognition performance with respect to the 
conventional LPC in severe noise conditions, and its computational simplicity. This technique relies on the fact 
that the autocorrelation sequence is less affected by broad-band noise - as in the case of noisy car environment 
- than the signal itself, especially at high lag indices. In the frequency domain, the spectrum of the one-sided 
autocorrelation sequence enhances the highest power frequency bands, and thus it is more robust to broad-band 
noise than speech spectrum itself. 

(b) When linear prediction techniques are used, the use of a non-symmetrical lifter and a relatively high 
prediction order is preferable. Actually, a non-symmetrical cepstral lifter is more convenient in the presence of 
broad-band noise due to the fact that cepstral coefficients of lower index are more affected by this type of noise 
than higher order ones in the truncated cepstral vector. On the other hand, a relatively high value of the 
prediction order can provide more robust estimates of the autocorrelation in the presence of broad-band noise 
due to the fact that the sensitivity to this type of noise tends to decrease along the autocorrelation lag. Too high 
model orders, however, yield poor recognition results because of the presence of spurious peaks in the spectral 
estimates. Regarding the time filtered parameters, that are routinely used in current speech recognition systems, 
their inclusion is very useful in all the considered conditions. 

(c) The multilabeling technique clearly outperforms the conventional VQ method. Unlike the conventional 
VQ, multilabeling makes a soft decision about which codeword is closest to the input vector, generating an 
output vector whose components indicate the relative closeness of each codeword to the input. This information 
is especially important in the case of noisy signals, because the hard decision performed by the conventional VQ 
about which of the codewords is the best match may easily be affected by the noise. The recognition rates 
obtained with both MultiLabeling models (MLHMM) described in this paper and the closely related SemiCon- 
tinuous models (SCHMM) were similar and outperformed considerably those obtained using discrete models 
(DHMM). In particular, the algorithm proposed in this work to estimate the MLHMM parameters tends to 
smooth the output probability distributions and led to slight better results than SCHMM models in this task, with 

lower computational load. 

(d) The cepstral projection distance measure, that was proposed for the case of additive white noise, does not 
show a good performance in this particular noisy car environment. 

(e) Finally, the combination of the various techniques, except the cepstral projection measure, provides better 
results than those obtained applying each technique separately. The best results are obtained using OSALPC 
parameterization, delta-cepstrum and multilabeling. 
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