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ABSTRACT

In this paper we address the problem of translating between languages with word order disparity.
The idea of augmenting statistical machine translation (SMT) by using a syntax-based reordering
step prior to translation, proposed in recent years, has been quite successful in improving transla-
tion quality. We present a new technique for extracting syntax-based reordering rules, which are
derived through a syntactically augmented alignment of source and target texts.The parallel corpus
with reordered source side is then passed to theN-gram-based machine translation system and the
obtained results are contrasted with a monotone system performance.

In experiments, we show significant improvement for smallerChinese-to-English BTEC trans-
lation task.
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1 Introduction

One of the most challenging problems facing machine translation (MT) is how to place the trans-
lated words in order inherent in the target language. A monotone SMT system suffers from weak-
ness in the distortion model, even if it is able to generate correct word-by-word translation. In this
study we propose a reordering model that involves both source- and target-side syntax information
in the word reordering process.

While a monotone translation approach is not able to deal with long-distance reorderings, a
constituent tree structure contains this information which can be used, for example, to change the
language topology scheme or clause restructuring.

Our work is inspired by the approach proposed in [IOS05], where the complete syntax-driven
SMT system based on a two-side subtree transfer is described. In their approach they construct a
probabilistic non-isomorphic tree mapping model based on acontext-free breakdown of the source
and target parse trees; extract alignment templates that incorporate the constraints of the parse trees;
and apply syntax-based decoding. We propose to use a similarnon-isomorphic subtree mapping
to extract reordering rules, but instead of involving them directly in the translation process, we use
them to monotonize the source portion of the bilingual corpus.

In the next step, the rules are applied to the source part of the same training corpus changing
the source sentence structure such that it more closely matches the word order of the target lan-
guage. Hence, the translation task is reformulated from theplain source-to-target to thereordered
source-to-target translation, which makes a mutual word order closer to monotonic. It leads to a
simplification of the translation task due to a shorter average length of bilingual units which it is
more likely to see when translating an unseen set.

Local and long-range word reorderings are driven by automatically extracted permutation pat-
terns operating with source language constituents and underlaid by non-isomorphic subtree trans-
fer. The target-side parse tree utilization is optional: itis considered as a filter constraining the
reordering rules to the set of patterns covered both by the source- and target-side subtrees. Apart
from the reordering rules representing the order of child nodes, a set of additional rewrite rules
based on a deep top-down subtree analysis is considered, which is another novel aspect of the
paper.

We used theN-gram-based SMT system of [MBC+06] to test the proposed syntax-based re-
ordering model, which is an alternative to the phrase-basedstate-of-the-art Moses1 system.

The rest of the paper is organized as follows: in Section 2 we outline the most significant related
works, in Sections 3 theN-gram-based SMT system is briefly reviewed. Section 4 introduces the
SBR technique, along with rules extraction and selection procedures. In Section 5 we present the
results and contrast them with other reordering techniques, while Section 6 concludes the paper.

1www.statmt.org/moses/

www.statmt.org/moses/
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2 Related work

There have been abundant publications on approaches involving context or additional information
to solve the problem of word order disparity. In practice, a reordering model operates on a sen-
tence level and is carried out based on word reordering rulesderived from the training corpus.
Reordering patterns can be purely statistical (see [CjF06], for example), use language-based syn-
tactic information [CKK05], the reordering can be driven by a lattice of syntacticallymotivated
alternative translations [Elm08] or be based on automatically extracted patterns driven by syntacti-
cal structure of the languages (see [CMn07b] as example). Another recent implementation of the
preprocessing approach to syntax-based reordering thoughan n-best list generation can be found
in [LZZ+07].

Word class-based reordering patterns were part of the Alignment Template system [OGK+04].
The modern state-of-the-art phrase-based translation system Moses, along with a distance based
distortion model [KOM03], implements the reordering [TZ05], which is based on a so-called MSD
(Monotone-Swap-Discontinuous) model, extracting reordering rules from a phrase alignment ta-
ble.

Reordering algorithms specifically developed for anN-gram system include a constrained
distance-based distortion model [CjMCdG+06], a linguistically motivated reordering model em-
ploying monotonic search graph extension [CMn07a] and a reordering model based on source-side
dependency trees involvement in the refinement of monotonicreordering patterns [CMn07b].

An example of a word order monotonization strategy can be found in [CjF06], where a mono-
tone sequence of source words is translated into the reordered sequence using SMT techniques. In
theory, this approach intends to tackle a long-range reordering, however, in practice, a number of
long-distance dependencies are not considered due to high sparseness of data.

In [XM04] the authors present a hybrid system for French-English translation, based on the
principle of automatic rewrite patterns extraction using aparse tree and phrase alignments. This
method differs from the one presented in this paper, among other distinctions, by a lexical model
underlying the subtree syntax transfer (the one in this paper being the novel techniques inspired by
[IOS05]) and a different statistical model used for translation (the authors conducted experiments
on a phrase-based system, while we are concentrated on the experiments with theN-gram-based
SMT).

Another important issue is the syntactic information incorporation into a purely SMT system.
In [D.C05] an hirerachically organized phrase-based model proposed, providing generalization
of statistically extracted phrases with target-side syntactic categories [ZV06]. A representative
sample of syntax-based systems include theoritecial MT systems based on bilingual synchronous
grammar [Mel04] and parse tree-to-string translation models [YK01]. A comprehensive compar-
ison of a phrase-based SMT system, following the Alignment Template approach [OGK+04] and
a syntax-based string-to-tree model [GHKM04] can be found in [DKWM07].
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3 Baseline SMT system

N-gram-based SMT has proved to be competitive with the state-of-the-art systems in recent eval-
uation campaigns [KHCj+08, LCjC+07].

According to theN-gram-based approach, the translation process is considered as anarg max
searching for the translation hypothesisêI

1 maximizing a log-linear combination of a translation
model (TM) and a set of feature models:

êI
1 = arg max

eI

1

{

M
∑

m=1

λmhm(eI
1, f

J
1 )

}

(1)

where the feature functionshm refer to the system models and the set ofλm refers to the weights
corresponding to these models.

The main difference between phrase-based andN-gram-based approaches lies in distinct rep-
resentation of bilingual units, which are the components ofthe translation model (TM). While
regular phrase-based SMT considers context only for phrasereordering but not for translation,
theN-gram-based approach conditions translation decisions onprevious translation decisions and
operate with bilingualn-grams, so-calledtuples, that are extracted from a word-to-word alignment.

Formally, it is expressed in form of three rules driving tuples extraction procedure:

• given a certain word-to-word alignment, a monotonic segmentation of each bilingual sen-
tence pair is produced

• no word in a tuple is aligned to words outside of it

• no smaller tuples can be extracted without violating the previous constraints

Phrase-based SMT does not consider the last rule that, consequently, lead to a different repre-
sentation of the bilingual context and need for constraintsof the maximum phrase length.

Figure1 shows example of tuple extraction resulting in four tuples.A detailed description of
theN-gram-based approach can be found in [MBC+06].

Figure 1:Example of tuples extraction.
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3.1 Translation model

Bilingual translation model which is considered as an engine of the SMT system approximates
the joint probability between source and target languages capturing bilingual context in form of
standardn-grams, as follows:

p(S, T ) =

K
∏

k=1

p(d̃k|d̃k−N+1, ..., d̃k−1) (2)

where d̃ = (s̃, t̃), s refers to source,t to target andd̃k to thekth tuple of a given bilingual
sentence pair segmented inK tuples.

3.2 Feature models

Along with a TM, theN-gram-based system implements a log-linear combination of5 additional
feature functions:a target LM of words, a target LM of Part-of-Speech tags (POS), a word bonus
model, a source-to-target andtarget-to-source lexicon models.

3.3 Decoding and optimization

As decoder, we used MARIE2 [CMndG05], a beam-search decoder implementing a distance-based
constrained distortion model, limited by two parameters:m - a maximum distance measured num-
ber in words that a phrase can be reordered andj - a maximum number of "jumps" within a sen-
tence [CjMCdG+06].

Given the development set and references, the log-linear combination of weights was adjusted
using a simplex optimization method and an n-best re-ranking3.

4 Syntax-based reordering

Our syntax-based reordering (SBR) system requires access to source and target language parse
trees, along with the source-to-target and target-to-source word alignments intersection. In the
framework of the study we used the Stanford Parser [KM03] for both languages, however the
system permits using any other natural language parser allowing for different formal grammars for
the source and the target languages.

4.1 Notation

SBR operates with source and target parse trees that represent the syntactic structure of a string in
source and target languages according to a Context-Free Grammar (CFG).

2http://gps-tsc.upc.es/veu/soft/soft/marie/
3as described inhttp://www.statmt.org/jhuws/

http://gps-tsc.upc.es/veu/soft/soft/marie/
http://www.statmt.org/jhuws/
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This representation is called"CFG form", and is formally defined in the usual way asG =
〈N, T, R, S〉, whereN is a set of nonterminal symbols (corresponding to source-side phrase and
part-of-speech tags);T is a set of source-side terminals (the lexicon),R is a set of production rules
of the formη → γ, with η ∈ N andγ, which is a sequence of terminal and nonterminal symbols;
andS ∈ N is the distinguished symbol.

The reordering rules then have the form

η0@0 . . . ηk@k → ηd0
@d0 . . . ηdk

@dk|Lexicon|p1 (3)

whereηi ∈ N for all 0 ≤ i ≤ k; (do . . . dk) is a permutation of(0 . . . k); Lexicon includes the
source-side set of words for eachηi; andp1 is a probability associated with the rule. Figure2 gives
two examples of the rule format.

4.2 Rule extraction

Concept. Inspired by the ideas presented in [IOS05], where monolingual correspondences of syn-
tactic nodes are used during decoding, we extract a set of bilingual patterns allowing for reordering
as described below:

(1) align the monotone bilingual corpus with GIZA++4 [ON03] and find the intersection
of direct and inverse word alignments, resulting in the construction of the projection
matrixP (see below));

(2) parse the source and the target parts of the parallel corpus;

(3) extract reordering patterns from the parallel non-isomorphic CFG-trees based on the
word alignment intersection.

Step 2 is straightforward; we explain aspects of Steps 1 and 3in more detail below. Figure2
shows an example of the generation of two lexicalized rules;we use this below in our explanations.

Projection matrix. Bilingual content can be represented in the form of words or sequences of
words depending on the syntactic role of the corresponding grammatical element (constituent or
POS).

Given two parse trees and a word alignment intersection, a projection matrixP is defined as an
M ×N matrix such thatM is the number of words in the target phrase;N is the number of words
in the source phrase; and a cell(i, j) has a value based on the alignment intersection — this value
is zero if wordi and wordj do not align, and is a unique non-zero link number if they do.

If a word that is aligned in only one direction appears in the brnch that is considered as a
candidate to be involved into a reordering pattern, it does not appear in the the alignment projection
matrix. For the trees in Figure2,

P =

(

0 0 2 0 0
0 1 0 0 0

)

4http://code.google.com/p/giza-pp/

http://code.google.com/p/giza-pp/
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Figure 2: Example of reordering rules extraction.

Alignment and sub-trees interaction. Each non-terminal from the source and target parse trees
is assigned a string carrying information about elements from the alignment intersection which are
contained in its child nodes, taking into account the order of their appearance in the tree (AI). For
example, the AI string assigned to the source-side internalnodeV P ∗ in Figure2 is "1 2" and to the
target-sideV P is "2 1". This information is used to indicate the source-side nodes which are to be
reordered according to the target language syntactical structure. Reordering patterns are extracted
following the source and target-side AIs as shown in Figure2 ("main rules").

If more than one non-zero element of the projection matrix isreachable through the child
nodes, the AI has a more complex structure, providing information about elements from alignment
intersection belonging to one or another child node. An example can be found in Figure3.

Here, the subtreeIP is assigned with theAIIP = "1 (2 3)", meaning that it has two child node:
the first contains the element1 from the alignment intersection and the second - elements2 and
3 (we call this subsequence "closed"). One-best reordering is kept at each node in the tree, and
reach downwards as necessary. The reordering system considers nodes assigned with one or more
children equally discerning the nodes with different orderalignment elements.

Unary chains. Given an unary chains like "ADV P → AD → ...", rules are extracted for each
level in this chain. For example in Figure2, the directly extracted reordering rules are equivalent
since the nodeADV P leads to the leaf through the nodeAD and does not have other edges.
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Figure 3: Example of complex AI structure.

The role of target-side parse tree. Roughly speaking, the use of target-side parse tree is op-
tional. Although reordering is performed on the source sideonly, the target-side tree is of great
importance: the reordering rules can be only extracted if the words covered by the rule are en-
tirely covered by both a node in the source and in the target trees. It allows the more accurate
determination of the covering and limits of the extracted rules.

4.3 Secondary rules

There are a lot of nodes for which a comparison of AIs indicates that a subtree transfer can be
done, but segmentation of child nodes is not identical.

Figure4 illustrates this situation. AI strings assigned to the rootnodes of the trees contain the
same elements, but segmentation and/or order of appearanceof elements do not coincide. These
subtrees can not be directly used for pattern extraction andmore in-depth analysis is required.

We adopt the following six steps algorithm for each parent node from the source-side parse
tree:

1. Find the AI sequence for the source-side top-level element (considering example,IP node
is assigned as "(1 2) (3 4)").

2. Go down through the target-side tree, finding AIs for each node.

3. Find all target-side closed subsequences for the source-side AI found on step 1. In example,
it is the subsequence "(1 2)".

4. Find all target-side isolated nodes corresponding to theelements which were not covered on
step 2. In example, these elements are "3" and "4".

5. Extend the set of source-side nodes found in steps 2 and 3 with equivalent branches. Since
the words which are not presented in the alignment intersection does not affect the projection
matrix, "equivalence" means here that all the branches spanning the elements from the given
instance are considered equally (for example, elementsNP 1 are equivalent to the nodes
NP 1, IP 1, CP 1).
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6. Place them in order corresponding to the target-side AI and construct the final reordering
patterns ("secondary rules").

Figure 4: Example of “secondary“ rules extraction.

As illustration of the limitations incurred by target-sideparse tree, the potential reordering
patternNP@0 V P@1 → V P@1 NP@0 (referring to the top node in the Chinese tree) is not
allowed due to distinct source- and target-side tree coverage.

4.4 Rule organization

Once the list of fully lexicalized reordering patterns is extracted, all the rules are progressively
processed reducing amount of lexical information. Initialrules are iteratively expanded such that
each element of the pattern is generalized until all the lexical elements of the rule are represented
in the form of fully unlexicalized categories. Hence, from each initial pattern withN lexical
elements,2N − 2 partially lexicalized rules and 1 general rule are generated. An example of the
process of delexicalization can be found in Figure5.

Thus, finally three types of rules are available: (1) fully lexicalized (initial) rules, (2) partially
lexicalized rules and (3) unlexicalized (general) rules.
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Figure 5: Example of lexical rule expansion.

On the next step, the sets are processed separately: patterns are pruned and ambiguous rules are
removed. Fully and partially lexicalized rules are not pruned out, but we set the thresholdskgener

to 3. All the rules from the corresponding set that appear less thank times are directly discarded.
The probability of a pattern is estimated based on frequencyin the training corpus, and only one
the most probable rule is stored.

In the present version of the reordering system, only the one-best reordering is used in other
stages of the algorithm, so the rule output functioning as aninput to the next rule can lead to
situations reverting the change of word order that the previously applied rule made. Therefore, the
rules that can be ambiguous when applied sequentially during decoding are pruned according to
the higher probability principle. For example, for the pairof patterns with the same lexicon (which
is empty for a general rule leading to a recurring contradiction NP@0 VP@1 → VP@1 NP@0 p1,
VP@0 NP@1 → NP@1 VP@0 p2 ), the less probable rule is removed.

Finally, there are three resulting parameter tables analogous to the "r-table" as stated in [YK01],
consisting of POS- and constituent-based patterns allowing for reordering and monotone distortion.

4.5 Source-side monotonization

Rule application is performed as a bottom-up parse tree traversal following two principles:
(1) the longest possible rule is applied, i.e. among a set of nested rules, the rule with a longest

left-side covering is selected. For example, in the case of the appearance of anNN JJ RB sequence
and presence of the two reordering rules

NN@0 JJ@1 → ... and

NN@0 JJ@1 RB@2 → ...

the latter pattern will be applied.
(2) the rule containing the maximum lexical information is applied, i.e. in case there is more

than one alternative pattern from different groups, the lexicalized rules have preference over the
partially lexicalized, and partially lexicalized over general ones.

Figure6 shows example of the reordered source-side tree corresponding to the example from
Figure2 with the applied pattern



– 10 –

ADVP@0 VP@1 → VP@1 ADVP@0

and the given lexicon. The resulting reordered Chinese phrase more closely matches the order of
the target language and is considered as a result of the subtree transfer.

Figure 6:Reordered source-side parse tree.

Once the reordering of the training corpus is ready, it is realigned and new more monotonic
alignment is passed to the SMT system. In theory, the word links from the original alignment can
be used, however, due to our experience, running GIZA++ again results in a better word alignment
since it is easier to learn on the modified training example.

5 Experiments and results

5.1 Corpus

The corpus that we used for training, development and testing is the Chinese-English BTEC speech
corpus consisting of tourism-related sentences typicallyfound in phrasebooks for tourists going
abroad. The main reason why the Chinese-English translation task was chosen for experiments
is that European languages are not so crucial for global (long-distance) reordering problem as
the translation between Asian languages and English. Our motivation for BTEC corpus using is
easiness and speed of experiment conduction, along with clearness of obtained results.

Basic statistics of the training material can be found in Table1.
The development and test datasets used to tune and test the system consist of 489 and 500

sentences, respectively, and are provided with 7 referencetranslations.
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Chinese English

Sentences 44.9 K 44.9 K
Words 299.0 K 324.4 K

Vocabulary 11.4 K 9 K

Table 1: Basic statistics of the training corpus.

5.2 Experiment setup

Evaluation conditions were case-insensitive and with punctuation marks considered. We used
the Stanford Parser as a NLP parsing engine [KM03] trained on the Chinese and English Penn
Treebank sets (32 POS/44 constituent categories for ArabicTreebank and 48 POS/14 syntactic
tags for English Treebank).

N-gram models were estimated using the SRILM toolkit [Sto02]. TM is represented in a
4-gram model form using modified Kneser-Ney discounting with interpolation, target language
model (LM) of words is a 4-gram model with modified Kneser-Neydiscounting, while a target-
side POS LM is a 4-gram with Good-Turing backing-off.

For all system configurations, apart from monotone experiments, parameters of the distance-
based reordering model were set tom = 5 and j = 5 for a trade-off between efficiency and
accuracy.

The optimization criteria which was used in simplex optimization was the highest4NIST +
100BLEU score (details about NIST metric are provided in [Dod02], BLEU score is described
in [PRWZ02]).

5.3 Results

A number of unique rules (rules) for each of the three groups, along with a number of unique rules
after processing and pruning as described in subsection4.5(rules’) can be found in Table2.

Main rules Secondary rules
rules rules’ rules rules’

Lexicalized 31,176 3,688 1,589.157 1,479
Partially lexicalized 1,028,481 4,191 1,434,888 916

General 365 22 640,606 130

Table 2: Reordering rule statistics on the initial step and after pruning.

The following scores are reported in Table3: final score obtained as a result of feature model
weights tuning for development dataset (dev), BLEU and METEOR scores [BL05] for the test
dataset. For the training set we present the number and vocabulary of tuples extracted from the
monotone and reordered corpora.



– 12 –

We contrast four system configurations: (a.) no word reordering technique application on the
preprocessing step, no distance-based distortion model (Monotone), (b.) SBR is applied involving
main rules only, no distortion model applied (SynBReor), (c.) SBR is applied involving main rules
only and allowing for distortion (m = 5, j = 5) during decoding (SynBReor+mj) and (d.) SBR
is applied involving main and secondary rules and allowing for distortion (m = 5, j = 5) during
decoding (SynBReor+SecRules+mj).

We also compare the obtained results with (e.) the constrained distortion model application to
the monotone corpus (Monotone+mj), that allows comparing two techniques and demonstrates the
effect of the algorithms application.

dev test BLEU test METEOR # tuples voc tuples

Monotone 48.17 19.50 47.05 150,378 36,643
Monotone+mj 48.36 19.91 47.30 150,378 36,643

SynBReor 47.55 19.91 47.50 157,345 36,936
SynBReor+mj 49.35 20.69 47.83 157,345 36,936

SynBReor+SecRules+mj 47.83 19.70 47.52 141,430 36,501

Table 3: Summary of the experimental results.

5.4 Discussion

Application of the SBR technique demonstrates significant improvement in translation quality ac-
cording to the automatic scores. The general trend is that evaluation metric on the test set improves
with the reordering model complexity, although declining when the secondary rules are added.

SynBReor+mj is found to be the best system configuration, outperforming the monotone con-
figuration by about 0.8 BLEU points (5.8 %) that is statistically significant for a 95% confidence
interval and 1000 resamples [Koe04]. At first glance, the combination of these reordering tech-
niques could introduce noise and hurt the results. However,the architecture of the distance-based
model leads to a search space extension, with many more candidates; this helps in decoding, and
does not interfere with the SBR, leading to a natural result improvement.

It is possible to see from Tables2 and3 that the introduction of secondary rules influences neg-
atively the number of extracted tuples and comparing to the "main rules only" configuration shows
a degradation in performance. Generally speaking, secondary rules include more elements than
primary ones and are more difficult to be seen in the dataset parsed with the Stanford Parser. How-
ever, we speculate that accurate pruning of secondary rulescould benefit the system performance
significantly.

Finally, comparing a standard distance-based constraineddistortion model coupled with de-
coding and SBR, the former shows better performance than thelatter by 0.78 BLEU and 0.53
METEOR points that is still statistically significant for both metrics.
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6 Conclusions and Future Work

In this paper we introduced a syntax-based reordering technique that monotonizes the word order
of source and target languages involved in the process of bilingual unit extraction. As can be seen
from the results presented, the proposed algorithm shows competitive performance comparing with
an alternative fundamental distance-based reordering model.

The comparison is done on the smaller Chinese-English translation task with a strong need for
word reorderings. Inspite of the fact that the major part of corpus sentences are short, there are
some long sentences, demonstrating promising potential ofthe SBR algorithm (example can be
found in Figure7). On the next step we are planning to apply the presented reordering technique
to a bigger Chinese-English corpus (NIST parallel corpus, for example).

Figure 7: Example of SBR application.

The method achieves the same performance as a distance-based distortion model, and improves
performance when combined with the latter. The use of syntax-based reorderings proves to be
useful to improve translation accuracy for the task under consideration, however the incorporation
of reordering rules, which are based on deep analysis of source and target parse trees (secondary
rules) into the reordering system degrades system’s performance. Nevertheless, we consider this
feature to have potential given accurate tuning of pruning parameters, which will be future work.

The proposed approach is flexible and will be applied to the phrase-based systems. Apart from
this task, further work includes the algorithm’s application to a different language pair with distinct
need for reorderings, analysis of the extracted tuples and development of the algorithm for accurate
reordering rules selection.
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