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ABSTRACT

Cepstral coefficients are widely used in speech
recognition. In this paper, we claim that they are not the
best way of representing the spectral envelope, at least
for some usual speech recognition systems. In fact,
cepstrum has several disadvantages: poor physical
meaning, need of transformation, and low capacity of
adaptation to some recognition systems. In this paper,
we propose a new representation that significantly
outperforms both mel-cepstrum and LPC-cepstrum
techniques in both recognition rate and computational
cost. It consists of filtering the frequency sequence of
filter-bank energies with an extremely simple filter that
equalizes the variance of the cepstral coefficients.
Excellent results of the new technique using a
continuous observation density HMM recognition
system and two very different recognition tasks,
connected digits and phone recognition, are presented.

1. Introduction

In speech recognition, the short-time spectral
envelope of every speech frame is often represented by
a set of M cepstral coefficients C(m), 1=m=M, which are
the Fourier series coefficients of its logarithm. These
cepstral coefficients usually come either from a set of Q
mel-scale log filter-bank energies (FBE) S(k), k=1,...,Q —
mel-cepstrum coefficients (MCC) representation— or
from a linear prediction analysis —LPC-cepstrum
representation [1].

The sequence of cepstral coefficients C(m) is a
quasi-uncorrelated and compact representation of
speech spectra. In fact, in the MCC representation, the
discrete cosine transform is an approximation of the
optimal Karhunen-Loéve transform, and therefore it
approximately decorrelates the frequency sequence
S(k), k=1,...,Q. Thus, the lowest quefrency (index m)
terms are those with the highest variance, a fact that
provides a compact representation.

Actually, the quefrency sequence C(m) is always
windowed before entering a distance or probability
computation in the pattern matching stage of the
recognition process. That window eliminates the
cepstral coefficients beyond a quefrency M. And, for
some type of speech recognition systems and for LPC-
cepstrum, it also weights the remaining coefficients in
order to approximately equalize their variance or,
inseparably, deemphasize the Ilow quefrency
coefficients [2-4].

However, we may wonder if the cepstral coefficients
are the best way of representing the speech spectral
envelope, at least for some usual speech recognition
systems. In fact, cepstral coefficients have at least three
disadvantages: 1) they do not possess a clear and
useful physical meaning as FBE have; 2) they require a
linear transformation from either the log FBE or the LPC
coefficients; and 3) in continuous observation Gaussian
density HMM with diagonal covariance matrices, the
shape of the cepstral window has no effect so that only
its length, i.e. the number of parameters M, is a control
variable.

In this work, in order to try to overcome those
disadvantages, we present an alternative to the use of
cepstrum that consists of a simple linear processing on
the log FBE domain. Our approach is able to improve
the speech recognition performance of the mel-
cepstrum representation and the LPC-cepstrum
representation by filtering the frequency sequence of log
FBE to equalize the variance of the cepstral coefficients.
Actually, a simple high-pass first order FIR filter suffices
to obtain a significant improvement of the recognition
rate. Inseparably from the equalization effect, the filter
also produces a certain decorrelation of the log FBE.
Moreover, the output of such a derivative-type filter
actually is a spectral slope measure and, according to
Klatt [5], the spectral slope is a perceptually important
characteristic for phonetic distance.

2. Equalization of the Variance
of the Cepstral Coefficients

Unless otherwise indicated, the sequence of Q
mel-scale DFT-based log spectral energies [1] is used
as the baseline speech spectral representation in this
work. In continous observation Gaussian density HMM
(CDHMM), using one mixture with diagonal covariance
matrix per state, the log probability that a given
observation vector S, whose components are the Q log
FBE S(k), k=1,...,Q, has been generated by a given state
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where n(k) and sz(k) are, respectively, the mean and
variance of the k-th spectral parameter in the state q.
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Note that, given the state q, the first term in (1) is
constant, and thereby we will only consider the last term,
which depends on the frequency sequence S(k). To
facilitate the reasoning, we will assume the same variance
for all states (grand variance). In this way, the variance
sequence is estimated over all the data, and we will

consider it as constant, i.e. s2(k)=s2, which makes sense
due to the fact that a constant value can always be
obtained by a proper signal preemphasis.

In the following, we will express the last term in (1) in
terms of the cepstral sequence C(m) corresponding to
S(k). Since in the usual mel-scale filter-bank distribution
there are not any filters centered at frequencies w=0 and
w=p, a zero is appended at both ends of the sequence, i.e.
S(0)=S(Q+1)=0, to represent the low energy contained at
those extreme bands. As the log spectrum is an even (and
periodic) function, we can write (1) in terms of the even
sequence S(k), k=-Q,...,0,...,Q+1, where S(-k)=S(k),

=1,...,Q. Thus, the last term in (1) is proportional to
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Then, by applying the Parseval relation [6], it follows
that that term is also proportional to
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where the even cepstral sequences C(m) and M(m), for
m=-Q,...,0,...,Q+1 are, respectively, the discrete Fourier
transforms of the even frequency sequences S(k) and

m(k).

Expression (3) shows that, although spectral-type
observations are used in our HMM framework, the
probability can be computed from the cepstral coefficients.
Since M(m) is also the mean of C(m) in the state q, every
cepstral coefficient Cm) contributes in an additive way to
the probability according to its square distance to the
mean value in the state, exactly like S(k) in (2). However,
although the grand variance has been equalized in (2), it is
not so in (3). Hence, the cepstral coefficients can be
weighted in order to equalize their variance, with the
purpose of obtaining an even contribution of them to the
probability computation. Note the coincidence of that
conclusion with the cepstral weighting studied in [2-4]. In
fact, a Euclidean distance on the cepstral coefficients was
assumed in those works, and expression (3) actually is a
Euclidean distance.

On the other hand, the equalization of the cepstral
variance produces a certain decorrelation of the log FBE.
In fact, it can easily be shown that the cepstral variance of
a non-symmetric uncorrelated log FBE sequence S(k),

=1,...,Q, is flat.

The variance of the cepstral coefficients has a
decreasing tilt along the quefrency axis [3]. For this
reason, the number Q of frequency bands has to be
accurately chosen, since too large a value would imply the
existence of high quefrencies which would be strongly
amplified by the inverse variance weighting. As those high

cepstral indexes carry much spectral estimation error [2],
the recognition performance would worsen. Hence, in the
case of a large Q value, the equalization should take place
only in the low quefrency region.

The conclusions drawn in the previous paragraphs for
CDHMM are also valid for discrete HMM and for any other
speech recognition system that uses a Euclidean-type
metric to incorporate the observations into the recognition
process.

3. Filtering of the Frequency Sequence
of Filter-Bank Energies

We aim to perform the equalization of the variance of
the cepstral coefficients by filtering the frequency
sequence of log FBE. Since the filtering is implemented as
a circular convolution with the sequence h(k), the cepstral
coefficients are multiplied by the DFT of h(k), here denoted
by H(m), so that expression (3) turns out to be
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First of all, according to the usual practice [1], in every
frame, the average value of the even sequence S(k) over
index k is subtracted, so the term in (3) corresponding to
the zero quefrency is removed whereas the other terms
remain unchanged. After that, S(k) is circularly convolved
with h(k) to obtain a filtered sequence. Since only the
values of the filtered sequence between k=1 and k=Q are
used as observations in the recognition system, we can
employ the shortest h(k), i.e. a length 2, with no
interference of the symmetric S(k), k=-1,...,-Q, samples in
the computation of the used segment of the filtered
sequence. The same is true if length 3 is used and h(k) is
centered around k=0. In this way, we can refer to the
process as an actual linear filtering, with h(k) being the
impulse response.

A first-order FIR filter that maximally equalizes the
variance of the cepstral coefficients can be easily obtained
by a least-squares modeling in the following way. Firstly,
the variance is estimated by averaging over all the frames
of a given database. Then, after performing an inverse
DFT, the quotient r between the values of the resulting
sequence —the covariance of S(k)- at index 1 and index 0
is computed. Thus, the first-order FIR filter that maximally
flattens the variance will be

H(z) =1- rz-1 (5)

Figure 1 shows the estimated variance correspon-
ding to the TI digits database [7] using Q=12 mel-scale
frequency bands, along with the inverse square magnitude
of the sampled filter response H(m), that was computed
following the above procedure. The resulting value of r is
0.5. Analogously, the coefficients of the least-squares
second-order FIR filter are -0.5 and -0.05, a fact that shows
how a first-order filter already obtains an accurate
modelling of the inverse variance. Note in Figure 1 the zero
value of the zero quefrency variance, which is caused by
the subtraction of the average S(k) value.
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Fig. 1. Approximation of the TI digits estimated variance
with the inverse square magnitude of the filter 1-0.5z-1

It is worth noting the computational simplicity of the
filtering with respect to the DCT computation of the mel-
cepstrum representation. In fact, average subtraction plus
first-order filtering requires 3Q additions and Q+1
multiplications, whereas, assuming M cepstral coefficients
are used, DCT requires MQ additions and multiplications,
which, for typical values of Q and M, can be an order of
magnitude higher. A way of further reducing the

computations is to use the filter z-z"1 which only requires
Q-2 subtractions, since it does not need multiplications
and avoids the average subtraction due to its zero at zero
quefrency.

Note that the cepstral coefficients can also be
replaced by filtered spectral energies in the case of LPC
spectra. Recognition results will be reported in the next
section based on both filter-bank and LPC spectral
estimates.

4, Recognition Experiments

We carried out speech recognition experiments by
filtering the average-subtracted frequency sequence of log
FBE in several ways, and using the filtered sequence as
the speech representation, with no addition of
supplementary differential features. A speech recognition
system based on continous observation density hidden
Markov models (CDHMM) was used (HTK software). The
experiments correspond to two different databases: the Tl
connected digits database [7] and the EUROM1 [8]
phonetic database.

4.1 Connected Digits Database

Firstly, training and testing were carried out with the
single and connected digit utterances of the adult portion
of the Tl database. After decimating the signals from 20
KHz to 8 KHz sampling rate and pre-emphasizing them
with a zero at z=0.95, Hamming windowed frames of 30
ms were taken every 10 ms. Each of the 11 digit left-to-
right hidden Markov models consisted of 8 states, and the
silence model had 3 states. Only one diagonal covariance
mixture was employed per state.

DFT-based mel-scale FBE

First of all, the new filtered log FBE sequence has
been compared with the MCC sequence. After trying
several values, 20 frequency bands (Q=20) and 8 cepstral
coefficients (M=8) were chosen as the empirically optimal
parameters for MCC. Table 1 shows the MCC recognition
results along with the ones obtained with the first-order
and the second-order equalization filters proposed in the
previous section. The energies corresponding to 12 mel-
scaled frequency bands (Q=12) were used for every filter.

| String | Word | Del | Subs | Ins
MCC 2259 809 363 446 1.07
order 1 18.02 579 198 381 1.27
order 2 18.08 581 201 3.80 1.30

Tablel Percentage of recognition errors for DFT-based
mel-scale FBE.

Note, in Table 1, the significant improvement achieved
by the filtered log FBE with respect to conventional MCC:
20% in string error rate, and 28% in word error rate. The
second order equalization yields almost exactly the same
rates as those of the first order filter, since the second
coefficient is very small.

In the reported experiments, the new spectral
representation technique requires more features per
frame than MCC (12 instead of 8). In order to check, in
these preliminary results, the need to have a larger
number of features, we performed an experiment with the
first-order equalization filter and Q=10. The resulting string
and word error rates were, respectively, 18.07% 6.03%,
only slightly larger than the ones obtained for Q=12.

Applying the Karhunen-Loéve transform to the
average-subtracted FBE in order to globally decorrelate
them, 20.60% string error rate and 7.49% word error rate
were obtained, scores worse than those of the filtered log
FBE. Consequently, although our HMMs assume
uncorrelated features, the important fact appears to be the
particular type of probability measure (1-3) that arises from
this assumption. Also experiments using full covariance
matrices in the Gaussian densities were carried out. The
resulting string error rate is 13.30% and the word error rate
is 4.42%, results better than those of the filtered log FBE
with diagonal matrices. Hence, the state decorrelation
achieved by using full matrices appears preferable to a
global one. However, the computational load is
substantially enlarged.

Our reasoning in Section 2 assumes only one
Gaussian mixture per state. For this reason, we performed
an experiment using 8 mixtures. The results are given in
Table 2. Note that there is also a significant relative
improvement like for one mixture, and therefore we can
hope than the conclusions drawn from that reasoning are
also valid for multiple mixtures.

| String | Word | Del | Subs | Ins
MCC 1557 526 175 351 0.89
order 1 13.08 394 129 265 1.02

Table2. Recognition error rates using 8 mixtures.



LPC-based FBE

LPC-based experiments were also carried out. After
computing 13 cepstral coefficients C(m), m=0,...,12, from a
10th order LPC analysis, they were transformed to the
spectral domain using a 24 point DFT. The obtained 13
values were considered as log FBE, and thereby their
average value was subtracted from them and they were
filtered as it was done with the mel-scale DFT-based FBE.
This procedure does not have a practical interest but the
results can give more support to the basic principle of our
technique. The value of the zero of the first-order filter is, in
this case, 0.53, quite similar to that of the previous DFT-
based case.

LPC | String | Word | Del | Subs | Ins
LPC-ceps | 24.03 7.76 247 529 210
order 1 19.71 6.92 231 461 0.99
@zl 19.67 6.90 221 460 1.08

Table3. LPC-based recognition error rates.

Table 3 shows the recognition results for the
conventional LPC-cepstrum representation and two
filtered LPC-based log FBE. Even though these results are
not so good as those of Table 1, we observe that filtering
improves again the recognition performance with respect
to cepstrum. Additionally, the second-order filter z-z1
achieves almost the same recognition performance as the
first-order equalizing filter. It can be shown that that
extremely simple second-order filter is equivalent in the
guefrency domain to the weighting proposed in [2].

4.2 Phonetic Database

Tests were also carried out with the EUROM1
phonetic Spanish database [8]. 842 utterances from 186
different phonetically balanced sentences and using 42
speakers were used for training, and 225 utterances from
61 sentences and 17 speakers for testing. Speakers are
balanced by gender. The sampling rate is 16 KHz.
Hamming windowed frames of 25 ms were taken every 10
ms. A CDHMM speech recognition system like that of the
last section was used. However, three diagonal
covariance Gaussian mixtures were employed per state in
this case, and each of the 33 left-to-right phone models
consisted of 3 states.

First of all, the new filtered log FBE representation
was compared with the MCC one. After trying several
values, 20 frequency bands (Q=20) and 12 cepstral
coefficients (M=12) were chosen as the empirically optimal
parameters for MCC.

|Accur |Phone | Del |Subs | Ins
MCC 16.77 51.98 [13.43 34.59 35.20
order 1 43.90 56.89 |13.47 29.64 12.99
order 2 4414 57.08 |13.19 29.73 12.94
@zl 41.30 55.33 |13.13 31.54 14.03

Table 4 Percentage of recognition rates and error rates for
the EUROM1 database.

Table 1 shows the MCC recognition results in terms
of phone recognition accuracy, correct phone recognition
and error rates, along with the ones obtained with three
different filters: 1) the first-order equalization filter, whose
zero is, in this case, z=0.26; 2) the second order
equalization filter whose coefficients are -0.23 and -0.13;

and 3) the second-order filter z-z1l. The energies
corresponding to 16 frequency bands (Q=16) were used
for every filter as a logical extension to 16 KHz of the mel
scale from Q=12 for 8 KHz.

The filtered FBE improve over MCC for all the
performance rates, except for the deletion rate which is
similar. The low accuracy of MCC in the EUROML1
database is due to its high number of insertions. The
second-order filter slightly improves the first-order one,
and the filter z-z1 produces again a remarkable
improvement, with results close to those of the
equalization filters.

5. Concluding Remarks

We have proposed a new parameterization techni-que
that outperforms the almost universally employed
cepstrum representations in both recognition rate and
computational cost by filtering the frequency sequence of
filter-bank energies. A first-order FIR filter suffices to
equalize the variance of the cepstral coefficients, and it is
able to obtain noticeable better recognition results than the
mel-cepstrum and the LPC-cepstrum  speech
representations. Even the computationally inexpensive z-z-
1 filter achieves remarkable recognition results. Note that
the coefficients of this filter are not computed from the
cepstral variance, so the filter has not to be adapted to the
current database.

A second-order filter may become necessary if the
number of bands is excessively large since, in that case,
the high quefrency coefficients carry a large amount of
estimation error, which can be attenuated with a second
zero close to z=-1. On the other hand, if the best
performance did not correspond to a completely flat
variance, a second-order FIR filter could also be
employed. One real zero would be used to deemphasize
the lower quefrency components, whereas the other zero
would deemphasize the equalized higher quefrency ones.
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