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Abstract

We present in this paper a fast, broad-coverage,
accurate morphological analyzer for Spanish
words, MACO+, which is an extended and im-
proved version of that described in (Acebo et al.,
1994). The earlier version had two main flaws:
it was not transportable, and it was too slow to
enable massive text processing. The presented
system not, only overcomes those two flaws, but
also offers improved coverage and accuracy. We
also present two general part-of-speech taggers,
which can be used to disambiguate the output
of the morphological analyzer. All modules run
n any Unix/Tinux machine as a pipeline process
and they may also be used inside the GATE en-
vironment for NLLP (Cunningham et al., 1996).
The system is currently being used to annotate
the T.EXFESP corpus, a 5.5 million word corpus of
Spanish, in a bootstrapping refining procedure.
Initial evaluation and results are reported.

Keywords: Morphological analysis, corpus lin-
guistics, POS tagging, linguistic resources.

1 Introduction and Motivation

We present in this paper a fast, broad-coverage,
accurate morphological analyzer for Spanish words,
MACO+, which is an extended and improved version
of that described in (Acebo et al.; 1994).

The output of the morphological analyzer can be
used as the input for a part, of speech (POS) tagger,
we have used two different taggers to disambiguate
the analyzed text, in a similar way to that described
in (Marquez & Padrd, 1997).

The whole system 1s being used to develop a 5h.5Mw
corpus of unrestricted nowadays Spanish.

The analyzers have been developed and used in the
framework of the ITEM and T.LExEsP projects. Both
projects aim to integrate and develop tools and re-
sources for NLP and for linguistic research in Spanish.
Both projects are briefly described below.

1.1 ITEM Project

ITEM is a project funded by Spanish Research Depart-
ment (CTCYT) consisting basically of integrating dif-
ferent existing NLP tools and resources in a unique
environment, in order to enable and ease the con-
struction of multilingual information extraction and
retrieval systems.

The environment includes tools for NLP of Catalan,
Basque and Spanish. The integrated tools include ba-
sic NT. tasks (tokenizers, morphological analyzers, tag-
gers, parsers, etc.) as well as higher level tools oriented
to information extraction. New tools and resources are
also being developed, and existing tools are improved
and integrated, as 1s the case of the morphological an-
alyzer presented in this paper.

The integration environment also contains several
lexical resources such as corpus, machine readable dic-
tionaries (MRDs), lexicons, taxonomies, grammars,
etc.

All the integrated tools and resources are docu-
mented, available and transportable. The software
used to support this integration is GATE (Cunning-
ham et al., 1996).

Partners in this project are the Computational
TLinguistics Group from the University of Barcelona
(http://www.ub.es/ling/labcat.htm), the NLP re-
search group from the Technical University of Catalo-
nia (http://www.lsi.upc.es/ acquilex/nlrg.html); the
NLP group from the Basque Country University
(http://www ji.si.ehu.es/Groups/TXA /), and the NLP
group from the Spanish Open University, UNED
(http://sensei.ieec.uned.es/item /grupol.N.htm).

1.2 TLrxEsP Project

The T.LEXEsP Project is a multi disciplinary effort im-
pulsed by the Psychology Department from the Uni-
versity of Oviedo. Tt aims to create a large database
of language usage in order to enable and potentiate
research activities in a wide range of fields, from lin-
guistics to medicine, through psychology and artificial
intelligence, among others.

One of the main issues of that database of linguistic
resources 18 the LEXESP corpus, which contains 5.5
Mw of written material, including general news, sports
news, literature, scientific articles, etc.

The corpus will be morphologically analyzed and
disambiguated and syntactically parsed. The tagset
used is PAROLE compliant, and consists of some 230
tags' fully expanded (using all information about gen-

der; number, person, tense, etc.) which can bhe re-

"There are potentially many more possible tags, but
they do not actually occur.



duced to 62 tags when only category and subcategory
are considered.

This paper is organized as follows: In section 2 we
describe the linguistic criteria used to develop the mor-
phological analyzer MACO+, as well its main imple-
mentation issues. In section 3 we describe the two tag-
gers which were used to disambiguate MACO+ output.
Finally, in section 4 we outline how these tools are be-
ing used to annotate and disambiguate the L.ExPFEsp
corpus.

2 MACO+ Description

The construction of the MACO+ morphological ana-
lyzer consisted of two steps:

1. The set of inflectional rules used by the old
MACO (Acebo et al., 1994) for analysing each
word was used (reverting the engine from anal-
ysis to generation) to generate, from a big root
dictionary, all possible Spanish words (according
to these rules) which were stored in a dictionary.

2. An efficient look-up procedure and other specific
modules were written to exploit the data.

The implementation of MACO+ is Unix-PERI. based.
This makes 1t easily transportable and overcomes the
first flaw of the first version.

The incorporation of new formsis always possible by
generating them with the appropriate root and models,
adding them to the form base and reindexing it.

The linguistic model followed to create the root dic-
tionary and the inflectional rules, as well as the final
word form dictionary are described in section 2.1. Sec-
tions 2.2 and 2.3 are devoted to the description of the
modules used for text segmentation and information
retrieval.

2.1 Form Generation Linguistic Model

TLinguistic data has been organized in order to generate
all the inflexional word forms with their morphological
attributes, their lemma, and all the possible interpre-
tations.

We have taken in consideration three kinds of mor-
phological information:

e The form segments (roots and suffixes) and the
models they have associated.

e The lemma.
e One or more morphological attributes.

Words are considered to be composed by a root and
an inflectional suffix. Each root and suffix is assigned
a model (paradigm) of inflection, and all the correct
combinations of models have been declared. The root
and suffixes dictionaries have the structures described
in tables 1T and 2. Tn addition, it must be stated that
root. model AM combines with suffix model TPU (to
construct forms as amo, amas, etc.), NEF with FE
(to construct liebre, licbres, etc.) and so on. The root

dictionary, consisting of about 12,000 verbal roots,
85,000 nominal and adjectival roots and 3,000 closed

category roots, was automatically extracted from ex-
isting MRD’s and available corpora. Models of inflec-
tion were semi-automatically assigned and validated.
The suffix dictionary is quite small and was manually

constructed.
Root Lemma  Model
am- amar AM
salt- saltar AM
estudi-  estudiar AM
liebr- liebre NEF
fiebr- fiebre NEF

Table 1: Organization of the root dictionary

Suffix  Model
-0 TPU
-as TPU
-e FE
-es FE

Table 2: Organization of the suffix dictionary

Morphological attributes can be associated to roots,
suffixes and models. When an attribute 1s associated
to a model, it is valid for all the roots or suffixes be-
longing to it. This implies a generalization about the
morphological behaviour of the language; when an at-
tribute is assigned to a word segment, it is considered
to be specific for it. For example the model AM has
an associated information about the category (verb);
the model TPU has associated information about tense
(present) and mode (indicative), and the suffix -0’ has
associated information about. person and number (first
and singular).

The linguistic analysis has been carried out following
morpho-ortographic criteria because we have to anal-
ize written texts: each variant of a root has been de-
clared in the dictionary withs its corresponding model.
For instance, verbs like dormir (to sleep) has three
roots: ‘dorm-’, ‘durm-’, ‘duerm-’, accounting for forms
like dormido (slept), durmiendo (sleeping) and duermo
(T sleep).

Derivation is very productive in Spanish, but we
have not implemented it in our system because many
problems for assigning the lemma would arise: it would
have to be declared, for each step in the derivational
process, which was the lemma and the rules to gener-
ate 1t. Tt doesn’t seem appropiate because the system
would loose its simplicity and it would probably over-
generate?.

The total number of root models for nouns and ad-

jectives is 29 and the number of root models for verbs

is 6 for the first Spanish paradigm (verbs with infini-
tive ending in ‘-ar’), 18 for the second (verbs ending in

2A treatment of derivation based on lexical rules is
planned to be incorporated in the short run.



“er’) and 21 for the third (verbs ending in “-ir’). The
number of rules combining models of roots and models
of suffixes 13 about 400. Trregular forms of verbs ser
(to be), haber (to be) and ir (to go) have been solved
one by one.

The generation of all possible forms was automati-
cally performed in a MacIntosh platform and it took
a few days of processing time. The result is the Span-
ish Word Form Dictionary (SWFD), a dictionary of
about one million entries, containing for each form the
lemma and a PAROLE compliant morphological tag
describing information such as category, subcategory,
gender, number, person, mode, etc.

The current SWFD? contains about 770,000 verbal
entries and about 225,000 entries for nouns, adjectives
and adverbials (inflection is much more productive for
verbs in Spanish). The required disk space for the
current codification is 21Mb.

2.2 Architecture of MACO+

The architecture of the morphological analyzer is a
modular pipeline of specialized recognizers, as showed

Raw Text

Text | Segmentation

in figure 1.
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Figure 1: General architecture of MACO+

The first block of modules, labelled Text Segmen-
tation, performs a proper segmentation of the text,
labelling the punctuation marks and joining groups of
words identified as one lexical unit (e.g. proper nouns
or compounds such as ‘aparte de’; ‘sin embargo’), date
or numerical expressions, etc. They are a collection
of specific heuristics to identify the following special
items:

3 .. . . .
The word form dictionary is continuously increased
and improved as new errors and lacks are discovered.

e Simple date patterns: ‘23/3/79°, ‘ano 1983, ‘13
de diciembre’, ‘30 de julio de 1993’ ...

e Abbreviations: em., Hz., Sr., ...

‘Maria Flena’, ‘San Cristébal de
las Casas’, ‘Ministerio de Cultura’, ‘Universidad

de Lodz’, ...

e Proper nouns:

e Multi word compounds: ‘sin embargo’, ‘no ob-

stante’, ...

e Numbers and numerical expressions: 12,12’

11.000, 1-3-1, 33942206-S, ...
e Punctuation marks.

These modules use a set of files containing compi-
lations of typical abbreviations, proper nouns (per-
sonal, geographical, marks, enterprises, etc.), multi
word compounds, functional words allowed to be in-
side compounds, punctuation marks, etc.

Modules can be activated or deactivated for each
particular analysis and, obviously, heuristics in each
module can be improved independently.

All the tokens not recognized by any of the preced-
ing modules are pipelined to the word look up mod-
ule, which is the real analyzer, containing the fast al-
gorithms for retrieving information from the SWFD.
This module is described in section 2.3.

Finally, a post process is performed on the non-
recognized words in order to identify verbal forms with
suffixed pronouns (named cliticos). This is a type of
pronouns that are added as suffixes to the verb forms,
acting usually as syntactic objects. For instance, the
form ddndonosla (‘giving it (fem.) to us’) has two suf-
fixed pronouns: “nos’” and ‘“-la’ indicating first person
plural indirect object and 3rd person singular feme-
nine direct object, respectively. These particular forms
were not, generated and included in the dictionary be-
cause there exist potentially infinite combinations due
to the possible recursive application of suffixes. Even
restricting to the combinations of two pronouns (which
is a realistic simplification) would result in an unfea-
sible increase of the dictionary.

Words that remain unrecognized after the pipeline
are labelled as unknown. Empirical results (see sec-
tion 4.1) show that they are about 0.5% in a free Span-
ish text.

2.3 Word Look-up Module

The Word look-up Module architecture is presented in
figure 2.

The search algorithm uses three sources of informa-
tion in the order indicated below:

1. A hash table containing the non content words.
2. A hash table containing the most frequent words.

3. A trie index for accessing the SWFD.
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Figure 2: General architecture of the word look up mod-
ule

The list of most frequent words has been extracted
from the LEXEsP corpus and it consists of about
125,000 word forms.

contain about 400 entries and they have been manu-

The hst of non-content words

ally written and validated. These lists are stored in
hash structures in primary memory, so we have direct
acces to all these forms. For the rest of forms we have
a trie structure to access the SWFD. The trie is also
in primary memory, so the access is also very fast.

Memory requirements of several architectures do not,
allow to load all this information in primary memory.
In these cases only a portion of the list of most common
words and a not completely expanded trie structure
are loaded into memory. This means that the search
of a word through the trie involves two steps: 1) reach
the corresponding leaf and 2) perform a hinary search
in the part (ideally small) of the dictionary adressed
by this leaf. This binary search is performed in disk,
but if the part to look is relatively small, namely not
greater than 2 5Kb, the average number of real seek
operations (involving a physical access to disk blocks)
is very small (about 2 3). Tn addition, this situation
only occurs with words not previously found in the two
hash tables, which are usually less than 5%.

In order to construct this partial trie structures a
pruning process is performed to adjust its depth ac-
cording to two basic parameters: the maximum size
allowed for the portions of disk addressed by leaves
and the representativity of this portions, that 1s, the
importance (in terms of frequency) of the word forms
they include. The idea i1s to have deeper branches
and thus, faster access for common words than
for rare words. We have performed several exper-
iments on Unix/Linux architectures, including Sun
Sparc/UltraSparc workstations and Pentium proces-
sors, with different, memory capacities (from 24Mb to
196Mb) to properly establish pruning parameters and
to decide the best memory charges. The list of experi-
ments and conclusions are described in detail in (Car-
mona, 1998).

As aresult, a list of tries of increasing sizes were gen-
erated together with a set of configuration tables that
decide which are the best choices (the size of frequent,
words hash and the proper trie to load) depending on

the amount of memory available and the size of the
text to be analyzed.

To give an idea of the performance achieved, the
selection for a Sun-Ultral workstation with a primary
memory of 94Mb, when analyzing a text of more than
500,000 entries, was to load 5Mb of information in
memory (3Mb for the hash of most common words and
2Mb for the dictionary index). The average number of
real disk seeks per word was (.14, and the retrieving
speed about 9000 words/sec. (it is important to note
that this time does not include output time in writting
results, but only the time of searching and taking to
memory the dictionary entries).

On the other hand, the speed achievable in a more
modest machine is also noticeable: in a Pentium
120/24Mb configuration the average speed was almost,
4000 words/sec.

Performance would be clearly improved in a C im-
plementation, but current speed is enough for our pur-
poses? and the PERIL implementation makes the sys-
tem more transportable since there is no need of re
compilation from one machine to another.

3 Morphosyntactic Disambiguation

The results produced by the morphological analyzer
described in section 2 can be pipelined into a mor-
to obtain the
appropriate reading in the given context.

In the framework of the ITEM and T.LEXEsP projects,
two different POS taggers will be used to annotate

phological disambiguator POS tagger

the LEXEsP corpus. First, a decision tree based tag-
ger (Marquez & Rodriguez, 1997), which learns a lan-
guage model from a tagged corpus, as well as predic-
tion rules for the possible readings for words not found
in the dictionary. Second, a relaxation labelling based
tagger (Padrd, 1998), which can use and combine infor-
mation from different sources (n gram, decision trees,
manually written, etc.) provided it is put in the form
of context constraints.

We are studying whether it is possible to take ad-
vantage of their collaboration and to integrate them
inside GATE in a broader system oriented to informa-
tion extraction.

3.1 A Tree Based Tagger

TreeTagger is a general Part-of-speech tagger that uses
Statistical Decision Trees for disambiguating. Tt con-
sists, basically, of two parts:

e A machine-learning supervised algorithm used for
learning the base of statistical decision trees.

e An algorithm for combining these trees in order
to disambiguate the text.

A general description of both parts is given be-
low, however, we refer the reader to the two previ-

*MACO+, running with all modules, took 2.54 hours
(including input /output processing time) to analyze the 5.5
million words LEXEsP corpus in a Sun-Ultra2 workstation.
(See section 4.1 for more details).



ous papers (Marquez & Rodriguez, 1997; Marquez &
Rodriguez, 1998) for a detailed explanation.

A cquiring the Tree Base POS tagging can be seen
as a problem of classification. In our case, classes are
identified with tags and examples correspond to the
words to disambiguate togeter with a set of features
referring to its context of appearance. So ‘classify a
new example’ is equivalent to decide which is the cor-
rect tag for the word in 1ts particular context.

More particularly, we have grouped the whole set of
examples into classes corresponding to the sets of tags
they can take (i.e, ‘noun-adjective’, ‘noun-adjective-
verb’, etc.). We call this sets ambiguity classes and
we consider a classification problem for each of them.
Decision ftrees (and in particular statistical decision
trees), recently used in several NLP tasks, such as
tagging (Schmid, 1994; Marquez & Rodriguez, 1997;
Daelemans et al.; 1996), parsing (McCarthy & Tehn-
ert, 1995; Magerman, 1996), sense disambiguation
(Mooney, 1996) and information extraction (Cardie,
1994), are a good tool for representing classification
rules for each ambiguity class classification problem.

The algorithm used for acquiring the statistical deci-
sion trees is quite standard and belongs to the TDIDT
(Top Down Tnduction of Decision Trees) family of ma-
chine learning supervised algorithms (Quinlan, 1993).
The decision trees are acquired from annotated cor-
pora and contain, basically, contextual and ortho-
graphical information: words and tags of a context
window of six items, information about capitalization,
prefixes, suffixes, etc. In some sense they represent
statistical information about the distribution of tags
and words in some relevant contexts.

Using the Model for Disambignating Using the
model described above, we have implemented a re-
ductionistic tagger in the sense of Constraint Gram-
mars (Karlsson et al., 1995). Tn a first step a word-
form frequency dictionary or a convenient morpholog-
ical analyzer provides each input word with all possi-
ble tags with their associated lexical probability. After
that, an iterative process reduces the ambiguity (dis-
carding low probable tags) at each step until a certain
stopping criterion is satisfied. The whole process 1s
represented 1n figure 3.

Language Model

Lexicon | |

v
Raw .
Text r Classify [1Update [{Filter %T

Tagging Algorithm

Tree Base

Tagged
—|
Text

Figure 3: Architecture of TreeTagger

More particularly, at each step and for each ambigu-
ous word (at a sentence level) the work to be done in
parallel is: 1) Classify the word using the correspond-
ing decision tree; 2) Use the resulting probability dis-
tribution to update the probability distribution of the
word; and 3) Discard the tags with almost zero prob-
ability.

After the stopping criterion 18 satisfied some words
could still remain ambiguous. Then there are two pos-
sibilities: 1) Choose the most likely tags among the
survivors to completely disambiguate the text. 2) Ac-
cept the residual ambiguity (for treating it in succes-
sive stages). A unique iteration forcing the complete
disambiguation is equivalent to use directly the trees
as classifiers and results in a very efficient tagger, while
performing several steps reduces progressively the effi-
ciency but takes advantage of the statistical nature of
the trees to get more accurate results.

Convergence properties have not been theoretically
studied, so the convergence can not be guaranteed.
However, empirical experiments suggest that conver-
gence is usually reached in a moderate number of
iterations and that the performance increases up to
a unique maximum and then softly decreases as the
number of iterations increases. For the experiments
reported in the following sections, the number of iter-
ations was simply fixed to three.

The tagger has been succesfully tested on the Wall
Street Journal corpus with an accuracy over 97% and
a speed between 300 and 600 words/sec. depending
on the implementation.

3.2 A Relaxation Labelling Based Tagger

Relaxation labelling is a well-known technique used
to solve consistent labelling problems (CLP). The al-
gorithm finds a combination of values for a set of
variables such that satisfies to the maximum possi-
Since CLPs

are closely related to constraint satisfaction prob-

ble degree a set of given constraints.
lems (Larrosa & Meseguer, 1995), relaxation labelling
is a suitable algorithm to apply a constraint-based lan-
guage model.

Relaxation operations had been long used in engi-
neering fields to solve systems of equations (Southwell,
1940), but they got their biggest success when the
extension to symbolic domain relaxation labelling
was applied to constraint propagation field, specially
in low-level vision problems (Waltz, 1975; Rosenfeld
et al., 1976). The possibility of applying it to NLP
tasks was pointed out by (Pelillo & Refice, 1994) who
use a toy POS tagging problem to evaluate their con-
straint compatibility estimating method. Tt has been
applied more massively to NLP disambiguation tasks
in (Padrd, 1998).

The presented tagger has the architecture described
in figure 4. Tt consists of an engine which applies the
constraints contained in the language model in order
to iteratively update the weights for each possible la-
bel for each word. Tf constraints are consistent, the
algorithm converges to a local optimum which sat-



isfies as much as possible the constraint set. For a

deeper discussion on the convergence of the algorithm,

see (Padrd, 1998).
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Figure 4: Architecture of the relaxation labelling based
tagger

The main features of the R based tagger are the
following:

e It uses a constraint oriented language model. This
enables 1t to deal with many kinds of information
(n grams, decision tree branches, linguistic infor-
mation, etc.) provided they are expressed in the
form of constraints.

e It performs parallel constraint satisfaction, that
is, the constraints are not applied in a predefined
order.

e It enables the use of heterogeneous information.
For instance, to perform POS tagging, one can use
constraints on the POS tags for words in context,
but also their morphological, semantic o syntactic
features, if available.

e It enables the simultaneous resolution of several
disambiguation tasks. For instance, by choosing
among a set, of pairs (tag, sense) instead of among
a set, of tags, one can perform simultaneously POS
tagging and WSD, and use constraints which take
advantadge of the cross information between both
tasks.

For more details on the algorithm and its applica-
tion to different NLP tasks, such as WSD or shallow
parsing, see (Padrd, 1996; Marquez & Padré, 1997;
Voutilainen & Padrd, 1997; Padrd, 1998).

The algorithm has been used with different lan-
guage models for English, combining statistical (n
grams), hand written, and machine learned (decision
trees) information, producing accuracies over 97%.
For Spanish, statistical and decision trees information
are being used.

4 Annotating the LEXESsP Spanish
Corpus

4.1 Morphological Analysis

MACO+, with all modules activated, was run on a Sun
Ultra2 workstation to analyze the whole LEXEsP cor-
pus. Tt took 2.54 hours (including input/output pro-
cessing time) to analyze the 5.5 million words at an

average speed of 600 words/sec. Comparatively, the
time that would take running on a Pentium-120/24Mhb
architecture was estimated to be 7.64 hours, at an av-
erage speed of 200 words/sec.

The resulting coverage is about 99.5%, which is re-
markable in a free text as LEXFEsP.

The percentage of ambiguous words is 39.26% and
the average ambiguity ratio is 2.63 tags/word for the
ambiguous words, 1.64 overall.

The recall (words that get the correct tag among the
proposed) is estimated to be 99.3%.

4.2 Morphosyntactic Disambiguation

Trained on a hand disambiguated subset of 70 Kw,
and tested on a fresh, also hand-disambiguated, 25
Kw subset, the obtained results were those detailed in
table 4.

The results marked RI. are those produced by the
Relaxation Labelling tagger, using different language
models: B stands for bigram, T for trigram, and C for
a constraint model obtained by writting in the form
of constraints the decision tree branches acquired by
the learning procedure of TreeTagger (T'T). Baseline
results obtained by a bigram HMM tagger (Elworthy
1993) and by a non contextual most likely tag tag-
ger (MLT) on the same training and test corpus are
presented 1n table 3.

Tagger ambiguous  overall
MLT 88.48%  95.47%
HMM 91.67% 96.83%

Table 3: Results of baseline taggers

Tagger ambiguous  overall
TT 91.77%  96.89%
RL-B 92.95% 97.33%
RL-T 92.67% 97.23%
RL-BT 93.14%  97.41%
RI-C 92.54% 97.18%
RI-BC 93.29%  97.46%
RL-TC 93.35%  97.49%
RL-BTC 93.61% 97.59%

Table 4: Results of our taggers using every combination
of constraint kinds

4.3 Joint Use of both Taggers

The ratio of agreement between both taggers has been
studied in order to establish whether it is possible to
take advantage of this agreement to more accurately
disambiguate POS in Spanish.

The procedure used for that starts by using a small
hand-tagged portion of the corpus (about 70 Kw) as
an initial training set.

Both taggers are then used to disambiguate further
material (some 200Kw), which is used to enlarge the
language model, incorporating it to the fraining set



and retraining the taggers. In order to minimize the
errors in this automatically disambiguated portion of
the new training set,, only the cases where both taggers
coincide are used, since experiments show that the er-
ror rate when both taggers coincide is significatively
lower than that obtained by any of them separately.

This procedure can be iterated in a bootstrapping
process that should lead to progressively better lan-
guage models. Forinstance, using the new training set,
one can re-estimate n-gram and tree models and use
them to disambiguate 200Kw more, choose the words
in which the taggers coincide, produce a larger training
corpus, repeating until no improvement, is produced.

The obtained results (see table 5) point that the pre-
cision when both taggers propose the same tag (TT
= RI-BT) is higher (98.36%) than when only one
tagger is used. Although this cannot be used to com-
pletely disambiguate a corpus, it may be useful as a
way to automatically obtain larger training sets with
a relatively small amount of noise.

Anyway, if we accept a certain ambiguity in the tag-
ger output, the combination of the outputs of both
taggers will obviously produce a higher recall. This
result can be found in the row marked as TT U RI.-
BT in table 5. Tt corresponds to the precision/recall
of a tagger that proposes a unique tag when TT and
RI.-BT coincide, and two tags when they do not. This
voting taggers approach may easily be extended to a
larger number of taggers as we plan to do in the short
run.

Tagger ambiguous overall
TT 91.77% 96.89%
RIL-BT 93.14% 97.41%
TT = RI.-BT 95.54% 98.38%

prec recall prec recall
TT U RL-BT  89.75% 95.65% 95.97% 98.36%

Table 5: Results of tagger colaboration

Given that the cases in which both taggers coincide
in their predictions represent over 90%, by using only
those cases we obtain a large enough reasonably ac-
curate new training corpus. Nevertheless if one wants
to exploit the cases in which the taggers disagree, it 1s
possible to hand analyze them with a low effort since
they represent a small percentage and in most cases
one of the two taggers proposes the right tag, thus
reducing the hand disambiguating taks to a binary
choice.

For instance, using a first new set of 200Kw and
given that both taggers agree in 97.5% of the cases
and that 98.38 of those cases are correctly tagged, we
get a new corpus of 195Kw with an error rate of 1.62%.
If we add the 7T0Kw manually tagged (assumed error
free) from the initial training corpus we get a 265Kw
corpus with an 1.19 error rate. By hand correcting
the ambiguous words of the 5000 disagreement cases
(totalling 1963 given the 39.26% ambiguity ratio) and
adding them to the previous set we finally obtain a

270Kw corpus with a 1.17 error rate, which can be
used to retrain the taggers.

As stated above, we hope that this increase of the
training corpus size will result in higher tagger perfor-
mances, in spite of the noise introduced.

5 Summary and Further Work

In this paper we have described a fast and accurate
morphological analyzer for unrestricted Spanish text.

The output of the analyzer can be input to a POS
We have described and tested two of them,
which are currently being used to develop from scratch

tagger.

a disambiguated corpus of Spanish of over 5 Mw.

Performed experiments show that the precision
when both taggers coincide is significatively higher
than the results obtained by any of them separately.
Further work will focus on to what extent this can be
used to build large training corpus keeping the noise to
a minimum level, and in using more than two taggers
in the voting collaboration approach.
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