A Flexible Distributed Architecture for Natural Language Analyzers

Xavier Carreras & Llu is Padro

TALP Research Center
Departament de Llenguatges i Sistemes Informatics
Universitat Politecnica de Catalunya
Barcelona, Spain.
{carreras, padro}@si . upc. es

Abstract
Many modernNLP applications require basic language processors sucto&st&ggers, parsers, etc. All these tools are usually pre-
existing, and must be adapted to fit in the requirements oafidication to be developed. This adaptation procedursuslly time
consuming and increases the application development @ostproposal to minimize this effort is to use standard eegiing solutions
for software reusability. In that sense, we converted alllanguage processors to classes which may be instantiatedcaessed from
any application via @ orRBAbroker. Reusability is not the only advantatge, since te&idutedcoORBA approach also makes it possible
to access the analyzers from any remote application, deedlm any language, and running on any operating system.

1. Introduction linguistic processors into an application, and the develop-

Modemn NL Application such as Machine Translation, Ment of efficieniLP applications.
Summarizing, Dialog systems, etc. are very likely to re-
quire basic language processors such as tokenizers, mor- 2. Requirements
phological analyzers, lemmatizerso® taggers, syntactic There are two crucial requirements to integrate lan-
parsers, etc. A significant share of the effort required toguage analyzers inLp applications: Reusability and ef-
developNLP applications is devoted to the adaptation of ’

existing software resources to the platform, format or APIﬁCIenCy.’ which are hlgh|¥ relallted-.
- Obviously, the ideal situation is to completely reuse pre-
of the final system.

Some initiatives have been taken aiming to facilitate theexIStIng language analyzers inside any rewe applica-

integration of existing resources, such@sre (Cunning- tion. The usual technique consists of wrapping the pre-

ham et al., 1996), based on the Tipster architecture (Gris existing _anaglyzerwﬂh format converters that translate frpm
: . e application data exchange format to the format required

man, 1996). Nevertheless, since they were more interest .
y the analyzer and viceversa.

in the devel t of h protot than final li- : .
n the cevelopment of researcn prototypes man fina apph This has the drawback that each piece of text to be an-

cations, those systems were far away from being efficientI q tbet lated to th tef t th
in processing time and in storage space. alyzed must be translated to the appropriate format, the an-

The approach ofATE is to develop a wrapper for each alyzer must be initialized (which may be costly), and the
linguistic tool to be used, and to define which are the depenr-esu:ti rr}uit be ;onvertf:; b?Ck and storecti. tTh'S procedure
dencies between tools. The resulting system is a powerfLﬂ1us € foflowedor eachanalyzer one wants 1o run.

prototyping environment in which one can test and select IS solution may be fast and cheap to develop, since
the processing chain that best matches one’s needs the pre-existing analyzers are used as black boxes and don't

Nevertheless, the system is based on a pipeIineHeed to _be re-engineered, but since those ana_\l)_/zers are usu-
schema, thus, any piece of text is run through all the sedlly de5|gn_ed as stand-alo_ne programs receiving an input
lected processors, and for each of them, is annotated a d producmg an output, this approachimplies a large over-
stored before it is passed to the next step. The prototy nead in the execution time and storage space of the resulting
ing power of the system, which enables to create and te&ystgm. L o
any combination of existing processors, has the price of a SINce most nowadaysLp applications are critical in
very large space and time cost, which makes it unsuitabldMme and/or storage space, either because they process huge
for industrial development purposes. amounts of text (as_ in the case of IR_mdexmg englnes)_or

In this paper we present the architecture we are Curbecaus_e they are interactive (i.e. dialog systems, online
rently using, which enables the quick and easy integratioffansiation, ...), language analyzers must perform only the
of basic language analyzers in anyp application. Itis Minimum number of format conversions, disk I/O opera-
based on a distributed object representation of language afNS: @nd costly initialization procedures.
alyzers which makes possible a client-server architecture to 1his may be achieved if pre-existing analyzers are

combine the different tools, enabling a quick integration of("é)designed as software objects (functions, methods,
servers, ...) which may be called or invoked from inside

Xavier Carreras holds a grant by the Catalan Researclﬁ’ther software, instead of as stand-alone black-box pro-
Department. This research has been partially funded by E@rams.
(NAMIC IST-1999-12392) and the Spanish Research Depattmen ~Summarizing, a trade-off between reusability and ef-
(T1C2000-0335-C03-02, TIC2000-1735-C02-02) ficiency must be reached, and we think that a reasonable

investment in re-engineering linguistic processorseas current software engineering technology provides us with
beedablesoftware components enables a faster developmeans to integrate software objects developed in different
ment of efficientnLP applications based on those analyzerslanguages, and even, running in different computers. This
and eases the maintenance of the analyzers. is further discussed in the next section.

In this section, the solution we have adopted after sev- 1he next step after the client-server visionnafp pre-
eral years of experience developing and using language ag€nted above consists of having our clients and servers
alyzers is presented. We think that it reduces the cost rdnteract through some standard distributed object middle-

quired to adapt or integrate the analyzers in naw appli- ~ Ware, which will gllow a client object to access a server
cations, keeping a good efficiency level. object developed in any qther language and running on any
Our current system is an evolved version of the analyz2ther computer or operating system.
ers presented in (Carmona et al., 1998). We use a client- | Nere are several such engineering tools, suchae
server architecture, in whickLp applications are seen as ©F CORBA, and although the most suitable may depend on
having two layers: A basic linguistic service layer which the kind of analysis services to be offered, the kind of appli-
provides analysis services (morphological, tagging, parsganons to be_ deyeloped, and the exploitation environment
ing, ...), and an application layer which, acting as a client®f these applications, any of them should serve the purpose
requests services from the analyzers. of hav_lng a cc_)mfortable and efficient development and ex-
yploitation environment.
In our case, we relied oaorRBA (Common Object Re-
quest Broker Architecture) standard (OMG, 1991) to man-
e Convert the data from application internal representa-age that interaction. The architecture is briefly described in
tion to the data structures required by the service inthe next section.
terface.
e Call the service and obtain the results. 4.1 COR_BA)
o Convert the results to the application internal repre-. AS detailed in the OMG web pagethe Common Ob-

In this scenario, integrating the basic analyzersin a ne
NLP application is reduced to three simple steps:

sentation. ject Request Broker Architecturés the Object Manage-
ment Group’s answer to the need for interoperability among
The advantages of this architecture are: the rapidly proliferating number of hardware and software

) products available todayCcoORBA allows applications to

* It enables to use the analyzer as a function call fromyommunicate with one another no matter where they are
anyNLP application, not as a separate software packigcated or who has designed them.
age. The Object Request Brokg©ORB) is the middleware

e The clients requesting analysis services may behat establishes the client-server relationships between ob-
not only NLP applications, but also other service- jects. Using an ORB, a client can transparently invoke a
providing modules (e.g. a parsing module might re-method on a server object, which can be on the same ma-
quest a BS tagging service). This enables the con-chine or across a network. As seen in Figure 1, the ORB in-
struction of increasingly more complex language anal+tercepts the call and is responsible for finding an object that
ySIS Servers. can implement the request, pass it the parameters, invoke

» Itbecomes unnecessary to define data interchange foits method, and return the results. The client does not have
mats between analyzers. Each application can choosg be aware of where the object is located, its programming
its own representation, provided it knows how to maplanguage, its operating system, or any other system aspects
it to the necessary data structures or parameters whethat are not part of an object’s interface. In so doing, the
requesting a service. ORB provides interoperability between applications on dif-

e Conversions are performed between application datferent machines in heterogeneous distributed environments
structures and servers data structures, dramatically reand seamlessly interconnects multiple object systems.
ducing the overhead caused by the reading, writing, In fielding typical client/server applications, developers
parsing, and transmitting of text-based representationase their own design or a recognized standard to define the
such asxmL, SGML, etc. (note that this doesn’'t mean protocol to be used between the devices. Protocol definition
than thenLP application can not usemL, only thatit depends on the implementation language, network trans-

doesn't need to internally work with it) port and a dozen other factors. ORBs simplify this pro-
¢ The linguistic processors do not need to be initializedcess since the protocol is defined through the application in-
for each piece of text to be analyzed. terfaces via a single implementation language-independent

e The application may decide how and when to invokespecification, thénterface Definition LanguadgéDL).
each analyzer, and on which text segment (i.e. there is ORBs allow the integration of existing components.
no need of a whole-text pipelined processing). Developers simply model the legacy component using the
same IDL they use for creating new objects, then write code

This Client-Server approach could be implemented inthat translates between the standardized and the legacy in-
any Object-Oriented language, but if pre-existing pro-terfaces.

cessors are developed in different languages, the re-
engineering cost would soon become to high. Fortunately, igee http:/mww.omg.org

5.1. The Analyzer Abstraction

) Object An analyzer can be seen as a software component -or
Client Implementation object- that performs a language processing task at some
P level. Our architecture is based on the design of data classes
A which define the objects that hold and structure the infor-
. mation involved in the language processing. Up to now,
IDL IDL our architecture includes two processing levels, defined by
Stub Skeletor] the processed data object:
Word. Basic object representing a word in a text. It holds
— Request the word from, its morphological information (type
of word, tokens, etc.) and morhposyntactic informa-
Object Request Broker tio_n, namely the list of pqssible morph_ologicgl anal-
ysis ([lemma, BS tag] pairs) and the disambiguated
candidate.
Figure 1:Client-server interaction vieORBA Sentence. Object representing a sequence of words which

form a sentence. Holds the sequence of words and a

syntactic tree.
4.2. Advantages of a standard

The advantages of using a standard architecture for the_ AS usual, a class hierarchy defines the classes in the ar-

middleware ofNLP applications are: chnepture (g.g.. words, senten_ces, syntactic trees) and t_he
relations which structure the objects (e.g. a syntactic tree is

« Applications may be distributed over a network, in- linked to a sentence). Each data class provides an interface
creasing their efficiency, since several tasks may bdOr accessing and modifying the data held by the objects of

performed in parallel. the class. _ _
« Several instances of the same service may be activated Under this framework, an analyzer is seen as an object
if necessary that provides a task on a processing level. For example, a

PoS tagger disambiguates the morphological analysis of a
word, or a parser generates the syntactic tree of a sentence.
) : : Therefore, in this setting, an analyzer is an object which
which may run under different operating systems, . : .
. provides methods to analyze data objects through the inter-
e CORBA specifications are open standards, and mMany, e of an analyzer class
fre; mglemenﬁtaﬂons can be found. We used ORBa- gjnce (ata classes provide the linguistic structure to be
cus and COPE held, and the analyzer objects use this structure to get and

. . sgt the data, it is crucial that the design of data classes is
The described advantages have a price that must be pali : .
eneral and rich enough to suit the needs of the analyzers

for. The main drawback is that the API of each analy—g

sis server are predefined, that is, the clients must adapt t|n the architecture. A proper design of the data classes, with

. i Sbstract access to the data, is required to ensure the incor-
the server, and the provided service may not cover exactl : . .
igoratlon of further language structure without affecting the

the client’s needs. Nevertheless, this is a drawback that : .
. .. Oesign of the analyzers depending on such data classes.
also presentin the wrapper approach, where the application

must use the analyzer as a black box. In addition, the object Wh|le .mOSt ofthe language tasks.may b.e specified with
. a simple interface, few of them require a simple computa-
oriented architecture makes it possible to build new server:

L . . : t?on on the data. Usually, the output of an analyzer is the
via inheritance of existing ones, easing the development o

)) . . . “result of a complex process of computation and reasoning
modules which provide the exact kind of service required . S : o
o which requires internal functionalities, the use knowledge
by the application.

and heuristics, and non-trivial parameter settings.

. On the one hand, the functionalities that an analyzer re-

5. The TALP-CLIC Language Processors quires can often be useful not only to the main task provided
In this section we describe the particular frameworkby the analyzer but also to other components in the archi-
we have adopted for the development of natural lantecture (e.g. a specific wrapper may require the use of the
guage analyzers and applications. Our system is devetemporal expressions patterns of a morphological analyzer,
oped by reseachers froALP research centéniversitat or the mechanism of a chart parser may be used with ar-
Politecnica de Catalunya) and fro@entre de Llenguatge i bitrary grammars, rather than specific syntactic grammars).
ComputacidUniversitat de Barcelona). On the other hand, the processing of an analyzer usually
The engineering methodology followed is that of the can be abstracted from the knowledge, and processign pa-
Object Oriented design. Following some basic principles oframeters may be set up under a general criterion (e.g. an an-
Object Oriented methodology the analyzers become flexialyzer abstracted from the language-dependent knowledge

e Clients and servers may be written in different pro-
gramming languages and run on different machines

ble, reusable and easy to distribute. may be used for processing several languages or restricted
subsets of a language considering specific terminology, or
2http://www.orbacus.com statistical-based analyzers can usually be tuned to meet an

Shttp://ww2.lunatech.com/research/corba/cope/ optimal criterion in the precision/coverage trade-off).

For the sake of flexibility and reusability, it is crucial analyzers into class methods. In this way, standard pro-
that the interface of an analyzer class provides access to tlessing becomes easy and both applications or higher level
internals of the analysis process. We distinct three types adinalyzers can make use of it as a black-box.
methods an analyzer should provide: In our system, we have designed only a shell analyzer

)) which carries all the standard high-level processing, namely
e Analysis. Provide the task of the analyzer as a blackyhe MorphoSyntaxanalyzer. It provides analysis methods

box,_in a simple way. _ for tokenizing raw text and processing language both at
e Setting. Allow to change the default behaviour of the word and sentence levels. The analyzer is parametrizable
analyzer. for choosing language, skipping processing levels, or se-

¢ Functionalities. Provide access to the specific interdecting the method for a particular task, when several ana-
nal functionalities that are present in the task of thelyzers are available.
analyzer. Their use may be complex and may require o
knowledge on the internal data structures of the object>-3: Applications
Final applications which require language processing
Our general approach consists in putting special efforare built on the top of analyzers, requesting their services
in the design of the class hierarchy which defines both theynd making particular use of the processed material.
analyzer classes and the data classes which hold the data Since analyzers are defined in classes, an application
across the language processing. Analyzer objects must retyan follow two main trends for their explotation, depending
only on the language data objects, and the processing funen the needs:
tionalities must be independent of any external processing
and accessible from the outside through a rich interface.
Standard software engineering must be used to achieve this
goal.

e Direct instantiation, as with arbitrary software li-
braries. The application may instance primitive ana-
lyzers (Figure 2) or a shell analyzer (Figure 3) depend-
ing on its needs.

e Client-Server scheme, building a separateRrRBA
server which provides the analyzers functionalities, as
ilustrated in Figure 4

5.2. Particular Analyzers

In this section we briefly describe the analyzers in our
architecture. We distinguish two types of analyzers, accord-

ing to their nature: primitive and shell analyzers. In all cases, standard software methodologies are followed.
Primitive Analyzers. Low-level analyzers, which per- »
form the basic language tasks.
Tokenizer Receives raw text and returns a sequence of —'
words. 7»
Morphological analyzer (MACO)Given a sequence of spiitter
words, adds to each one a list of morphological anal- —»
ysis. It also recognizes and joins multi-word forms
in a single word. It is composed by specific analyz- »
ers -such as a form dictionary search, recognizers for _»
dates, numbers, monetary and percent quantities, suf-
fixed forms, multiword compounds, etc. Details can _,
be found in (Carmona et al., 1998) chart parse
PoS Taggers (Relax, TreeTagger) Receive word se- —>

quences and disambiguate ito®, based on the con-
text of the word. See (Padro, 1998; Marquez, 1999)Figure 2:Direct use of the primitive analyzers from an applica-
for details. tion

Named Entity recognition (NAMEEBiven a sequence of _ _ _ _
words, recognizes and classifies name entities. The easiness of adaptation of analyzers into an applica-

Sentence SplitterReceives a sequence of words and re-ion depends again on the particular needs of the applica-
turns a sequence of sentences. tion. Standard processing is direct through shell analyzers.

Full parsing (TACAT)Chart parser for full syntactic pars- :2 SvrjI—g\?gvae:atllloQzllrsp;?]((:jefsi;glrgcgvrl]ltlrgfg]LcJItLeedI:ggtesagcess o
ing. Details in (Atserias and Rodriguez, 1998). Y P)

Partial P Identif ial . As an example, our basic application is tB&andard
artial barser entifies partial ‘parsing structures, Language Processolt is a distributed client-server appli-
namely chunks and clauses of a sentence.

cation providing standard language processing facilities at

Shell Analyzers. A shell analyzer offers high level func- different contexts. The server is jusc@RBA mterface to

tionalities, and, rather than performing the tasks, compose§leMorphoSyntaanalyzer. Up to now, four clients use this

the functionalities of low-level analyzers of the architec- S€"Ver:

ture. e Basic ms-analyzea command-line tool which pro-
The main purpose of shell analyzers is the encapsula- cesses plain text and produces a simple verticalized

tion of the standard processing involving several primitive output.

» by selecting those analyzers involved in the tasks, and pro-
viding analysis services as compositions of the analyzers

—» methods. Moreover, a data object in the authoring could
Sentenca link language data objects and formatting information of
» » the text in an inherited class.
Relax .
* 6. Conclusions

|—={TreeTagge We have presented a client-server architecture to de-
velop NLP systems which require basic language analysis

—{ NAME services.

Tacat An Object Oriented paradigm is used to design and
' implement the language analyzers, obtaining great felix-
_» ibility to reuse theNLP processors from any application.

When managed through some standard middleware such as
CORBA, this approach enables to distributer applica-
Figure 3:Use of the shell analyzer from an application tions on a network.
A further step may include having permanently run-
. . ning language analysis servers that may be called by any
¢ xms_—analyzeieals W't_hXML encoded text, using our client application. This is client-server interaction may be
particularbT for bas!c language struciure) moved up to the Internet, providing linguistic analisys ser-
 NAMIC SplLPdeals withxmL encoded text, using the yjces to anyNLP application running in the net and consti-
specificoTb for NAMIC project (Basili etal., 2001). yting a useful mechanism to share resources between re-
e A cal program provides a demo of our analyzersseach groups, or even becoming a commercial service.
through the weh

7. References
In each case, the client is just a simple program which _ i _
extracts the data from its corresponding source of data intd- AtSerias and H. Rodriguez. 1998. TACAT: TAgged Cor-
the language data objects, requests an analysis service toPUS Analizer Tool. Technical Report LSI-98-2-T, Depar-

the server and returns the result back to the corresponding t2ment de LSI. Universitat Politecnica de Catalunya.
output. The architecture is presented in Figure 4. . Basili, R. Catizone, L. Padr_o, M.T. Pazienza, G. Rigau,
A. Setzer, N. Webb N., Y. Wilks, and F. Zanzotto. 2001.

: Multilingual Authoring: the NAMIC Approach. IPro-
» ceedings of the ACL Workshop "Human Language Tech-
_» nology and Knowledge Mgnagement”]]
J. Carmona, S. Cervell, L. Marquez, M.A. Matrti, L. Padro,
MS I Sentence R. Placer, H. Rodriguez, M. Taulé, and J. Turmo. 1998
MorphoSyntak——{ 3piitt . , M. guez, M. , . . .
@ - An Environment for Morphosyntactic Processing of Un-
» restricted Spanish Text. IRAroceedings of the 1st Inter-
national Conference on Language Resources and Evalu-
CORBA _’ ation, LREC pages 915-922, Granada, Spain, May.
» H. Cunningham, Y. Wilks, _and R. Gaizauskas. . 1996.
GATE - a General Architecture for Text Engineer-

on Computational Linguistics, COLINGCopenhagen,

» Denmark.

R. Grishman. 1996. The TIPSTER Text Phase Il Architec-
ture Design, Version 2.2. Technical Report, New York
University.

But the availability of the analyzers as reusable soft--- Marquez. 1999 Part-of-Speech Tagging: A Machine—

ware components enables the development of higher-level L€a/Ming Approach based on Decision Treé$d. The-
applications, as for instance an authoring program for writ- sis, Dep. Llenguatges i Sistemes Informatics. Universitat

ing news in a web-based environment, which may require Politécnica de Catalunya. _
language services for automatically detecting and linking®MG: 1991. Common Object Request Broker Architec-

named entities. Moreover, another sophisticated service tUré. Technical Document, Object Management Group.
may be the automatic detection of relations between enti- ttp://www.omg.org, http://www.corba.org.

ties, which would require partial syntactic parsing as a prel- Padro. 1998. A Hybrid Environment for Syntax—
process to the inference of entity relations. The applica- Semantic TaggingPhd. Thesis, Dep. Lienguatges i Sis-

tion could build a sever offering the requested services, just t€mes Informatics. Universitat Politécnica de Catalunya,
February. http://www.Isi.upc.es/"padro.

Tacat i i i
@ _> ing. In Proceedings of 16th International Conference
Applic

Figure 4:Use of the shell analyzer from an application via corba

“http:/ivww.lsi.upc.es/nlp

