
Deliverable 6.1 Infrastructure for Extractive

Summarization

7 Enero 2014

1 Introduction

Due to the overabundance of textual information on-line, automatic text sum-
marization [Saggion and Poibeau, 2013], the reduction of a text to its essential
content, is fundamental for information systems dealing with textual content. In
recent years text summarization research has intensified with well known eval-
uation programmes promoting the interest in the area. Comparison of different
summarization approaches, which is usually done by relying on well stablished
or widely used or accesible systems such as MEAD [Radev et al., 2004], is of
paramount importance in text summarization. However, MEAD only provides
few summarization functionalities or features such as a position-based feature,
a controid-based feature, and a first-sentence similarity feature which could be
limited for comparison purposes. Availability of customizable natural language
processing systems, and not only ready-made applications, are very important.
In this deliverable we describe the infrastructure for text summarization we
are relying on in SKATER. It will allow us to create different summarization
applications to be used in SKATER’s demonstrators.

1.1 The SUMMA System

The SUMMA toolkit [Saggion, 2008] is a library which can be used to imple-
ment different summarization solutions, making it ideal for the creation of base-
line and advanced summarization systems. It is based on the GATE system
[Maynard et al., 2002] and it can be used in the GATE graphical user interface
or as a java library making it suitable for the creation of standalone or web
applications. In order to carry out extractive text summarization in SKATER
we rely on two components for basic linguistic analysis. On the one hand we can
use the components available through the GATE system [Maynard et al., 2002]
which we use mainly for processing English texts, on the other hand we make
use of the FreeLing system [Padró and Stanilovsky, 2012] mainly for processing
Spanish, Catalan, and other languages targeted in SKATER. When using FreeL-
ing we produce for the input text either an XML file which will be compatible
with GATE or we call the FreeLing analyser and read and store the linguistic
information into the document we are processing.

The different language functionalities are represented at Figure 1 as different
modules and are implemented following the service oriented architecture (SOA).
Therefore all the pipelines (one for each language) have been implemented as

1



web services and may be requested to produce different levels of analysis (e.g.
tokenization, lemmatization, NERC, parsing, relation extraction, etc.).

Figure 1: Language Processing Architecture

For Dependency Parsing, we use Treeler1, a library that implements sev-
eral methods, among other statistical methods for tagging and parsing based on
[Carreras, ],[Koo et al., 2008], [Carreras et al., 2008].

As with syntactic parsing, Semantic Role Labeling methods are devel-
oped with the Treeler library. In order to train models, the treebanks made
available by the CoNLL-2009 shared task are used. The method implemented
follows a pipeline architecture described in [Llúıs et al., 2013].

The Freeling includes a Word Sense Disambiguation engine based in WN
synsets, UKB (AgirreSoroa09).

The final step allows to convert all the gathered linguistic information into
a semantic representation. Our method is based on the notion of frame: a
semantic frame is a schematic representation of a situation involving vari-
ous participants. In a frame, each participant plays a role. There is a direct
correspondence between roles in a frame and semantic roles; namely, frames cor-
respond to predicates, and participants correspond to the arguments of the pred-
icate. We distinguish three types of participants: entities, words, and frames.
For example, in the sentence in Figure 2, we can find three frames:

Figure 2: Output of the analyzers for the sentence Acme, based in New York,
now plans to make computer and electronic products.

• Base: A person or organization being established or grounded somewhere.
This frame has two participants: Acme, a participant of type entity play-
ing the theme role (the thing being based), and New York, a participant
of type entity playing the role of location.

• Plan: A person or organization planning some activity. This frame has
three participants: Acme, a participant of type entity playing the agent

1http://treeler.lsi.upc.edu

2



role, now, a participant of type word playing the role of time, and make,
a participant of type frame playing the theme role (i.e. the activity being
planned).

• Make: A person or organization creating or producing something. Partici-
pants in this frame are: Acme, entity playing the agent role, and products,
a participant of type word playing the theme role (i.e. the thing being cre-
ated).

It is important to note that frames are a more general representation than
SVO-triples. While SVO-triples represent a binary relation between two partic-
ipants, frames can represent any n-ary relation. For example, the frame for plan
is a ternary relation because it includes a temporal modifier. It is also important
to note that frames can naturally represent higher-order relations: the theme
of the frame plan is itself a frame, namely make. A graphical representation of
the example sentence is presented in Figure 3

Figure 3: Graphical representation of frames in the example sentence.

The SUMMA system contains a series of processing resources – implemented
algorithms – to compute among other things sentence relevance features. It also
contains a number of language resources – data – to be used by a number of
components.

1.2 Processing Resources

There are over twenty processing resources in SUMMA from which we choose
a set of most representative ones to describe in this deliverable. The SUMMA
Web site describe all resources2. The resources are used to: (i) carry out tex-
tual analysis from the linguistic information provided by different text proces-
sors, and to (ii) compute features for sentence relevance assessment. A number
of classical features for computing sentence relevance described in the litera-
ture [Mani, 2001] have been implemented in SUMMA. Both single and multi-
document summarization can be produced with the components described here.

1.3 Statistical Computation

The SUMMA NEs Statistics module is used to produce term frequency
values for each word (or expression) in the document. It additionally uses a
table of inverted document frequencies to produce tf*idf values for each word
in the document. The idf table is a language resource instantiated from a

2http://www.taln.upf.edu/pages/summa.upf/

3



Figure 4: Summarization Application in the GATE GUI

pre-computed table or a table created on-line from a corpus. The statistics pro-
duced for each word or expression can be filtered out (nullified) using the com-
ponente SUMMA Term Frequency Filtering. The combination of tf*idf
computation and filtering can effectively used to implement a keyword method
[Luhn, 1957].

1.4 Vector Representation and Similarity Computation

Several sentence relevance features can be produced by comparing the content
of sentences with other document or external units (e.g. query, title, centroid).
The module SUMMA Vector Computation creates vector representations
for textual units to support cosine-similarity computation. The dimentions of
the vectors are the sentence words (or terms) and the values of the dimen-
tions statistics such as tf*idf. The SUMMA Title Sentence Similarity is
a flexible module which can be used to compare two document units (e.g., a
sentence and the title of the document) and produce a similarity value for each
sentence in the document. The comparison is implemented as the cosine of
the angle between the two vectors being compared. In addition to vectors, the
SUMMA N-Gram Computation can be used to compute customized n-
grams for evaluation purposes (SUMMA has an implementation of the ROUGE
metrics [Lin, 2004]) and for detecting n-gram redundancy in a multidocument
summarization setting. The SUMMA Centroid Computation module is
used to create a vector representing the centroid of all document vectors in a
corpus.

4



1.5 Sentence Relevance Scorers

SUMMA scorers implement various traditional summarization features used by
extractive systems:

• SUMMA Position Scorer scores sentences relying on customized weights
for the position of the sentence in the document.

• SUMMA Paragraph Scorer scores sentences relying on customized
weights for the position of the sentence in the paragraph.

• SUMMA Cue Phrase Scorer implements a cue-based relevance feature
relying on a pre-computed list of cue-phrases and weigths

• SUMMA Sentence Document Similarity is used to compute the rel-
evance of a sentence with respect to the full document.

• SUMMA Query Method Scorer implements a relevance metric based
on the similarity of a sentence to a user query. The query itself is a
document which contains a vector to be compared to.

• SUMMA Term Frequency Scorer implements a relevance scoring
function based on term distribution. It uses the statistics computed by
the statistcal computation module.

• SUMMA Semantic Scorer computes a relevance feature for a sentence
which is based on the distribution of named entities it contanis. The
named entities to be considered can be customized by the user.

These components produce features (with numerical values) that can be
combined to produce a sentence scoring function implemented by a dedicated
component – the SUMMA Simple Summarizer. Sentences’ scores are used
as the basis for ranking and selecting content units for the summary. Figure 4
shows the components in a summarization application.

The component SUMMA Simple Multi-document Summarizer can
be used for extracting relevant sentences from multiple ”related” documents
filtering out redundant information. A multidocument relevance feature based
on centroid computation can be produced using the SUMMA Centroid Sen-
tence Computation.

1.6 Language Resources

SUMMA implements language resources needed by several of its components.
For example in order to perform statistical analysis, SUMMA relies on inverse
document frequency tables [Salton and McGill, 1983] which can be created from
external resources or directly with a SUMMA component. Tables for stop words
and categories are also implemented to support term filtering functionalities. In
order to implement our cue phrase component a ”cue” word lists is also provided
through a Gazetteer lists implementation available with GATE.

5



2 Creating Summarization Applications

Summarization applications can be created as GATE pipelines combining pro-
cessors for text analysis and components for sentence scoring and summariza-
tion. The applications can be saved and used in any environment which contains
the libraries and resources used to create the application.

Summarization applications to support single document summarization of
news articles in Spanish and Catalan have been developed and deployed in a
server. The interface can be seen at http://summaweb.upf.edu/. This applica-
tion can create stand alone summaries or sentence highlights. This application is
one of the prototypical examples which we will follow to demonstrate SKATER
summarization functionalities.

In addition to the basic building blocks to create NLP pipelines, two ready
made applications implemented in Bash script files are made available for sin-
gle and multi-document summarization. These applications can be easily cus-
tomized by setting up a fixed number of parameters in the script files. Example
input files are also provided to test the applications.

3 Installation of the Summarization Infrastruc-
ture

The SUMMA software is distributed through a dedicated Web site at http:

//www.taln.upf.edu/pages/summa.upf/. The site includes all documentation
on processing resources required to use the software as well as Java examples
of how to create standalone applications. The instalation procedure is very
simple, it only requires the user to copy the distribution directory to disk. To
run the summarization infrastructure within GATE the software can be loaded
as a plug-in. To run the infrastructure in a standalone application the GATE
and SUMMA libraries must be included in a Java application.

4 Evaluation Components

SUMMA implements the ROUGE evaluation framework based on n-gram com-
parison. The module SUMMA Rouge Evaluation takes a document and
a set of reference summaries and produces ROUGE values. Both the system
summary to evaluate and the ideal summaries must have the appropriate n-
grams computed before ROUGE can be applied. SUMMA also implements
summary comparison using the Bleu MT evaluation [Pastra and Saggion, 2003]
and cosine-similarity [Donaway et al., 2000].

5 Related Work

Research on text summarization has progressed steadly in recent years, how-
ever, and contrary to what occurs with NLP tools such as parsers, named entity
recognizers, POS taggers, etc. which can be obtained from well known packages

6



such as GATE, OpenNLP, etc., not many laboratories make their summariza-
tion tools freely available. The MEAD system [Radev et al., 2004] is a well
known example of a tool which has been widely used for comparison purposes,
however it has fewer components and customization possibilities than SUMMA.
Compendium [Lloret, 2012] is a text summarization architecture which includes
components for relevance computation and redundancy removal, however appart
from an on-line demo, it is not freely available.

6 Conclusions

This report described the summarization infrastructure for extractive summa-
rization to be used in SKATER. The summarization components can be applied
to the output of FreeLing making it appropriate for integration in SKATER and
for the development of different summarization solutions for the languages ad-
dressed by the project. The infrastructure is easily extensible to accomodate
new relevance computation features including those relying on deeper linguistic
processing (e.g. semantic interpretation, word sense disambiguation).

References

[Carreras, ] Carreras, X. Experiments with a higher-order projective depen-
dency parser. In Proceedings of the CoNLL Shared Task Session of EMNLP-
CoNLL 2007, pages 957–961.

[Carreras et al., 2008] Carreras, X., Collins, M., and Koo, T. (2008). Tag, dy-
namic programming, and the perceptron for efficient, feature-rich parsing.
In CoNLL 2008: Proceedings of the Twelfth Conference on Computational
Natural Language Learning, pages 9–16, Manchester, England. Coling 2008
Organizing Committee.

[Donaway et al., 2000] Donaway, R. L., Drummey, K. W., and Mather, L. A.
(2000). A comparison of rankings produced by summarization evaluation
measures. In Proceedings of the 2000 NAACL-ANLPWorkshop on Automatic
Summarization - Volume 4, pages 69–78, Stroudsburg, PA, USA. Association
for Computational Linguistics.

[Koo et al., 2008] Koo, T., Carreras, X., and Collins, M. (2008). Simple semi-
supervised dependency parsing. In Proceedings of ACL-08: HLT, pages 595–
603, Columbus, Ohio. Association for Computational Linguistics.

[Lin, 2004] Lin, C.-Y. (2004). ROUGE: A Package for Automatic Evaluation of
Summaries. pages 74–81, Barcelona, Spain. Association for Computational
Linguistics.

[Lloret, 2012] Lloret, E. (2012). Text Summarisation based on Human Lan-
guage Technologies and its Applications. PhD thesis, Universidad de Alicante,
Spain.

[Llúıs et al., 2013] Llúıs, X., Carreras, X., and Márquez, L. (2013). Joint arc-
factored parsing of syntactic and semantic dependencies. Transactions of the
Association for Computational Linguistics (TACL), 1(1):219,230.

7



[Luhn, 1957] Luhn, H. P. (1957). A statistical approach to mechanized en-
coding and searching of literary information. IBM Journal of Research and
Development, 1:309–317.

[Mani, 2001] Mani, I. (2001). Automatic Summarization. John Benjamins Pub-
lishing Company.

[Maynard et al., 2002] Maynard, D., Tablan, V., Cunningham, H., Ursu, C.,
Saggion, H., Bontcheva, K., and Wilks, Y. (2002). Architectural Elements of
Language Engineering Robustness. Journal of Natural Language Engineering
– Special Issue on Robust Methods in Analysis of Natural Language Data,
8(2/3):257–274.

[Padró and Stanilovsky, 2012] Padró, L. and Stanilovsky, E. (2012). Freeling
3.0: Towards wider multilinguality. In Language Resources and Evaluation
Conference (LREC 2012). ELRA.

[Pastra and Saggion, 2003] Pastra, K. and Saggion, H. (2003). Colouring sum-
maries bleu. In Proceedings of the EACL 2003 Workshop on Evaluation Ini-
tiatives in Natural Language Processing: Are Evaluation Methods, Metrics
and Resources Reusable?, pages 35–42, Stroudsburg, PA, USA. Association
for Computational Linguistics.

[Radev et al., 2004] Radev, D. R., Allison, T., Blair-Goldensohn, S., Blitzer,
J., Çelebi, A., Dimitrov, S., Drábek, E., Hakim, A., Lam, W., Liu, D., Ot-
terbacher, J., Qi, H., Saggion, H., Teufel, S., Topper, M., Winkel, A., and
Zhang, Z. (2004). Mead - a platform for multidocument multilingual text
summarization. In LREC.

[Saggion, 2008] Saggion, H. (2008). SUMMA: A Robust and Adaptable Sum-
marization Tool. Traitement Automatique des Langues, 49(2):103–125.

[Saggion and Poibeau, 2013] Saggion, H. and Poibeau, T. (2013). Automatic
text summarization: Past, present, and future. In Poibeau, T., Saggion, H.,
Piskorski, J., and Yangarber, R., editors, Multi-source, Multilingual Infor-
mation Extraction and Summarization, Theory and Applications of Natural
Language Processing. Springer.

[Salton and McGill, 1983] Salton, G. and McGill, M. J. (1983). Introduction to
Modern Information Retrieval. McGraw-Hill.

8


