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Chapter 1Introdu
tionIn re
ent years a growing amount of resear
hers on natural language pro
essing (NLP) feelthat the problems traditionally addressed separately should {as available resour
es enableit{ be addressed as a whole. For instan
e, [Wilks & Stevenson 96℄ showed that knowingthe part-of-spee
h tag of a word 
an help to disambiguate its sense in a high per
entage ofthe 
ases, thus, a system performing word sense disambiguation using not only the 
ontextinformation related to words and senses but also part-of-spee
h information, would have higherperforman
e. This idea is also present in works like those of [Jung et al. 96, Ng & Lee 96℄,whi
h presented models able to 
ombine di�erent kinds of statisti
al information.This statement is quite obvious, sin
e it seems logi
al that the more information we have,the better results we will produ
e at a given task. But if we take this idea twofold, we 
anuse ea
h kind of information to help to disambiguate the other at the same time, e.g. we 
anperform POS tagging and WSD simultaneously, using all information available, and takingadvantage of the intera
tions between the di�erent kinds of information. This is more or lesswhat we humans do when understanding a NL utteran
e: we use all kinds of information{lexi
al, synta
ti
al, semanti
, et
.{ at the same time to 
ut out improper analysis and pi
kthe right one.In this thesis we are interested in the use of 
exible algorithms that 
an handle dif-ferent kinds of information (semanti
, synta
ti
, . . . ) using di�erent kinds of knowledge(linguisti
, statisti
al, . . . ), in the style of Constraint Grammars [Karlsson et al. 95℄, wherethe properties that may be owned by a word or referred to by a 
onstraint are only limitedby whi
h ones are available. Getting over the histori
al 
ontroversy between linguisti
 andknowledge-based and statisti
al methods, numeri
al information about natural language be-haviour must not be let out, sin
e work in re
ent years [Klavans & Resnik 94, Jung et al. 96,Haji�
 & Hladk�a 97, Pedersen et al. 97, Della Pietra et al. 97, Ristad & Thomas 97℄ 
on�rmsthat it may deal very a

urately with language ambiguities.The task of �nding a set of relationships or intera
tions between all information kinds su
hthat they des
ribe natural language behaviour, has the 
ategory of language modelling andinvolves linguisti
, 
ognitive and psy
hologi
al 
onsiderations whi
h are beyond the s
ope ofthis thesis. Anyway, sin
e our system 
an not work without a reasonable language model, wewill also use several existing alternatives for a
quiring one, ranging from manual developmentto n-gram 
olle
tion, through the use of ma
hine learning algorithms.1



2 CHAPTER 1. INTRODUCTION1.1 Goals of this Resear
hThis thesis des
ribes resear
h into the use of energy{fun
tion optimization algorithms tosolve natural language pro
essing tasks. The main obje
tive is to show that su
h algorithms
an deal with hybrid information: 
ombining statisti
al and linguisti
 information, and withdi�erent 
lassi�
ation dimensions (e.g. POS tags, senses, et
.).The problems addressed are mainly those of disambiguation nature, that is, those wherethe task to be done 
onsists of disambiguating a given sequen
e of words somehow ambiguous(part-of-spee
h, synta
ti
 fun
tion, word sense, et
.). Most of the NLP tasks where a valuehas to be assigned to a feature 
an be seen as disambiguation problems, sin
e the task 
anbe summarized as pi
king the most appropriate value from a known set of possibilities.The optimization algorithm fo
used on is relaxation labelling, sin
e there is a 
lear stru
-tural mat
hing between disambiguation-like problems and the tasks the algorithm naturallyapplies to. The algorithm 
hooses the most suitable label for ea
h of the variables in themodel. Our work will 
onsist of modelling the NLP task we want to perform in an appropri-ate way for the algorithm.1.1.1 Finding a 
exible NL modellingThe obje
tive of enabling a hybrid model requires a way to express NL properties that is ableto in
lude all kinds of information. This means that if we want to perform POS-tagging, wedo not have to limit ourselves to use POS information about the words in the senten
e, butwe 
an also in
lude any information available: semanti
, synta
ti
, morphologi
al, et
.In addition, we want our model to be able to 
ope with impre
ise or in
omplete informa-tion, and with 
exible relationships between NL elements, i.e. we want a robust model that
an produ
e a reasonable result when fa
ed to a non-expe
ted 
ase. So we need to introdu
ea numeri
al, statisti
al, or probabilisti
 
omponent in our model.The way in whi
h we will try to a
hieve this kind of model is the following: We will use
ontext 
onstraints to express the relationships between linguisti
 elements. These 
onstraintswill admit any kind of available linguisti
 information. The 
hoi
e of 
onstraint modelling en-ables us to des
ribe a wide range of patterns, from a simple bigram {expressed as a 
onstraintbetween two 
onse
utive word positions{ to a 
omplex stru
ture relating di�erent features ofseveral words {e.g. 
he
king the existen
e of an auxiliary verb to the left of a given word withno o

urren
es of a noun in between{.The possibility of using statisti
al information will be introdu
ed by assigning to ea
h
onstraint a numeri
al value, whi
h will be interpreted as its weight or strength, that is, as howstri
tly must be that 
onstraint applied. This enables pure 
lassi
al linguisti
 models {whereall 
onstraints are stri
tly applied{, statisti
al models, where all 
onstraints have a weight
omputed through some statisti
al method, or any hybrid model where some 
onstraints arestri
tly applied and some others are not.1.1.1.1 Constraint Satisfa
tionAs des
ribed in the previous se
tion, we 
hose our model to be a weighted 
onstraint one.So, the disambiguation problems will 
onsist of applying the 
onstraints and �nding the
ombination that satis�es them all (or, at least, as many of them as possible). The naturalapproa
h to these problems are 
onstraint satisfa
tion algorithms.



1.1. GOALS OF THIS RESEARCH 3Sin
e many useful and interesting problems 
an be stated as a 
onstraint satisfa
tionproblem {travelling salesman, n-queens, 
orner and edge re
ognition, image smoothing, et
.[Lloyd 83, Ri
hards et al. 81, Aarts & Korst 87℄{ this is a �eld where we �nd many algorithmsthat have been long used to solve them.The best-known are those of basi
 operational resear
h, su
h as gradient step or relaxation{for 
ontinuous spa
es{ or mathemati
al programming {for dis
rete spa
es{. In the later
ase, we 
an 
onsider the optimization as a sear
h in a state spa
e, and use 
lassi
al arti�
ialintelligen
e algorithms, from depth-�rst or breadth-�rst global sear
h to more sophisti
atedheuristi
 sear
h algorithms su
h as hill-
limbing, best-�rst or A�.1.1.1.2 Relaxation LabellingAlthough any of the algorithms mentioned in the previous se
tion 
ould be used to pro
essa 
onstraint model, we want to deal with weighted 
onstraints, whi
h requires the algorithmto be able to move in a 
ontinuous spa
e. This leads us to 
hoose relaxation labelling sin
eits obje
tive fun
tion is expressed in terms of 
onstraints, whi
h makes it more suitable toour needs than gradient step or other optimization algorithms for 
ontinuous spa
e su
h asneural nets, geneti
 algorithms or simulated annealing whi
h do not use 
onstraints in su
h anatural way as relaxation labelling does. Di�erent optimization algorithms will be 
omparedin se
tion 2.2.Relaxation labelling is a well-known te
hnique used to solve 
onsistent labelling problems(CLP). The algorithm �nds a 
ombination of values for a set of variables su
h that satis�es-to the maximum possible degree- a set of given 
onstraints. Sin
e CLPs are 
losely relatedto 
onstraint satisfa
tion problems [Larrosa & Meseguer 95a℄, relaxation labelling will be asuitable algorithm to apply our 
onstraint-based language model. In addition, sin
e all ofthem perform fun
tion optimization based on lo
al information, relaxation is 
losely relatedto neural nets [Torras 89℄ and gradient step [Larrosa & Meseguer 95b℄.Relaxation operations had been long used in engineering �elds to solve systems of equa-tions [Southwell 40℄, but they got their biggest su

ess when the extension to symboli
 domain{relaxation labelling{ was applied to 
onstraint propagation �eld, spe
ially in low-level visionproblems [Waltz 75, Rosenfeld et al. 76℄. The possibility of applying it to NLP tasks was re-
ently pointed out by [Pelillo & Re�
e 94, Pelillo & MaÆone 94℄ who use a toy POS taggingproblem to evaluate their method to estimate 
ompatibility values.1.1.2 Appli
ation to Di�erent NL tasksA se
ondary goal of this resear
h is proving that our approa
h works in pra
ti
e, applying itto several NLP tasks. As stated above, the most natural tasks for this approa
h are those ofdisambiguation nature, so we will test our system in this kind of tasks. Namely, at part-of-spee
h tagging, at 
ombined POS-tagging plus shallow parsing, and at 
ombined POS-taggingplus word sense disambiguation.Part-of-spee
h tagging is the most widely known disambiguation problem in NLP, andthe results obtained by 
urrent systems are probably the best results ever obtained in a NLPtask. This is due in part to the irruption of statisti
al methods in this �eld in the late 80's,but the good results are also re
e
ting that this task is stru
turally simpler than others, andthat a simple method 
an solve a great part of it. Nevertheless, the ambiguities that remain



4 CHAPTER 1. INTRODUCTIONunresolved frequently belong to the 
lass of those whi
h 
ould only be solved through the useof higher level information.We will apply relaxation labelling to POS-tagging, and 
he
k whether the addition ofhigher level information results in a performan
e in
rease. We will also use POS-tagging asa base problem to test the in
uen
e of 
ross-information when solving di�erent NLP taskssimultaneously.Word sense disambiguation is a task right opposite to POS-tagging with respe
t to 
om-plexity and a
hieved results. From the impossible 
onsensus on what should be 
onsidereda sense to the almost inexistent test set to perform experiments through the intrinsi
 taskdiÆ
ulty, the obsta
les that the resear
her in this task must over
ome are mu
h greater thanin the previous 
ase, and thus, the results reported by 
urrent works are mu
h further awayfrom what 
ould be desired.While 
urrent methods tend to use only one kind of knowledge, we will try to solve WSDsimultaneously with POS-tagging, to 
he
k whether the 
oalition of both yields better resultsthan ea
h one of them separately.Shallow parsing is a re
ent idea, whi
h is half way between POS-tagging and parsing. It
onsists of assigning to ea
h word {or at least to ea
h important one{ its synta
ti
 fun
tion,but only super�
ially, not building the whole parse tree.Shallow parsing and POS tagging are 
losely related: knowing that the part-of-spee
h fora word is, say, verb, dis
ards the possibility for that word to be the subje
t of the senten
e,and the other way round: when the parser de
ides that a word is a
ting as subje
t of a givenverb, it is implying that it must have a nominal part of spee
h. This relationship subs
ribesthe idea that both tasks 
an be solved in parallel 
ombining the knowledge needed to solveea
h of them.In all 
ases, we will 
ombine language models obtained from di�erent sour
es: statisti
s
olle
tion, linguist-written rules and ma
hine-learned rules.1.2 Setting1.2.1 UtilityFrom a general perspe
tive, 
onstraint satisfa
tion and optimization algorithms may be usefulto NLP purposes, sin
e they enable a basis where language models whi
h take into a

ountmany linguisti
 phenomena and features as well as di�erent relationships among them maybe easily applied to real linguisti
 data.In addition, the model is not restri
ted, that is, it 
an be built in
rementally and it alsoallows the merging of information obtained from many di�erent sour
es.From a more spe
i�
 point of view, a system as the one we are proposing enables linguiststo 
ombine di�erent kinds of information to perform a single task, or even perform severaldisambiguation tasks in parallel, taking advantage of 
ross information between the di�erentknowledge sour
es. This not only should help to improve the results that 
urrent systemsobtain at tasks su
h as part-of-spee
h tagging or word sense disambiguation, but it also opensa path towards the development of wide{
overage knowledge{integrated linguisti
 models andits appli
ation to real data.



1.2. SETTING 5The utility of su
h disambiguation tasks is well known: POS-tagging is very useful inredu
ing the ambiguity amount that a parser must deal with [Waus
hkuhn 95℄, it is also usedin spee
h re
ognition to anti
ipate the probabilities of the next word to 
ome and thus redu
ethe ambiguity [Heeman & Allen 97℄, and it 
an also be used to extra
t synta
ti
 knowledgefrom annotated 
orpora, for instan
e via grammati
al inferen
e [Pereira 92, Charniak 93,Smith & Witten 95, Lawren
e et al. 95℄.Word sense disambiguation is a mu
h more diÆ
ult task, and its obvious utilities are theambiguity redu
tion for further appli
ations su
h as information retrieval, ma
hine transla-tion, do
ument 
lassi�
ation, et
. From a more linguisti
 or lexi
ographi
 point of view it
an be used to study or to extra
t knowledge on sele
tional restri
tions, sense 
o-o

urren
es,di�erent uses of the same word, et
.1.2.2 Approa
hesThe 
urrent approa
hes to disambiguation problems su
h as POS-tagging or WSD, 
an be
lassi�ed in two broad families. The 
lassi
al and most straightforward is the linguisti
approa
h, whi
h uses linguist-written language models. Re
ently the statisti
al approa
h hasa
hieved great su

ess due to the good results it yields using easily obtainable models basedeither on 
olle
ting statisti
s from a training 
orpus or using ma
hine-learning algorithms toextra
t the language model from that training 
orpus.The linguisti
 models are developed by introspe
tion. This makes it a high labour 
ostwork to obtain a good language model. Transporting the model to other languages meansstarting over again. They usually do not 
onsider frequen
y information and thus have alimited robustness and 
overage. Their advantages are that the model is written from alinguisti
 point of view and expli
itly des
ribes linguisti
 phenomena, and that the modelmay 
ontain many and 
omplex kinds of knowledge.The statisti
al approa
hes are based on 
olle
ting statisti
s from existing 
orpora, eithertagged (supervised training) or untagged (unsupervised training). This makes the modeldevelopment mu
h shorter {spe
ially in the unsupervised version{ and the transportation toother languages mu
h easier, provided there are 
orpora in the desired language. They takeinto a

ount frequen
y information, whi
h gives them great robustness and 
overage.The statisti
al approa
hes 
an be divided in two 
lasses, a

ording to the 
omplexity ofthe statisti
al model they a
quire:First, we have the simple{model 
lass, where the language model 
onsists of a set of 
o-o

urren
e frequen
ies for some predetermined features. Typi
al representatives of this 
lassare n-gram based models for part-of-spee
h tagging or word form 
o-o

urren
e models forword sense disambiguation. The main disadvantages of these models are that they 
olle
t onlysimple information (usually 
o-o

urren
es) and that the language model is neither expli
it(it is only a set of frequen
ies) nor has any linguisti
ally signi�
ant stru
ture.Se
ond, there is the 
omplex{model 
lass whi
h 
onsists of using a ma
hine{learningalgorithm to automati
ally a
quire a high-level language model from a training 
orpus, Theknowledge a
quired may take the form of rules, de
ision trees, frames, et
. but it will be more
omplex than a simple set of frequen
y 
ountings. In this 
ase, the model is expli
it, sin
eusual ma
hine{learning algorithms produ
e symboli
 knowledge, but it does not ne
essarilyhave any linguisti
 meaning.



6 CHAPTER 1. INTRODUCTIONThe previously des
ribed methods are approa
hes to a
quire a language model. On
ethe model is a
hieved it is applied through some algorithm to perform some NLP task. Themodel-applying algorithm is usually very dependent on the kind of model and task, so adi�erent model and algorithm is needed for ea
h di�erent task.We will present in this thesis the use of relaxation labelling algorithm to perform NLPtasks, and we will show that it 
an be used either with models belonging to any of thedi�erent families des
ribed above or with hybrid models. We will show also that if the model
ontains information to perform di�erent NLP tasks, the algorithm is able to solve these taskssimultaneously.1.3 Summary1.3.1 ContributionsThe resear
h des
ribed in this thesis in
ludes new 
ontributions in the following aspe
ts:1.3.1.1 Use of optimization te
hniques in NLPThe main 
ontribution of this work is taking a step further into the use of optimization te
h-niques to pro
ess natural language. The su

essful use of the relaxation labelling algorithm
on�rms that previous works whi
h used simulated annealing or neural nets were in a promis-ing path. This approa
h enables the modelling of language through sets of 
onstraints andthrough obje
tive fun
tions, whi
h 
an be optimized lo
ally or globally {depending on the
ompromise eÆ
ien
y vs. a

ura
y one wants to take{ using a suitable algorithm. It alsomakes the appli
ation algorithm independent of the language model.The main diÆ
ulty presented by this approa
h is the modelling of language in a way thatenables the use of optimization algorithms. The proposed weighted 
onstraint model is onlyone possibility {other algorithms may require di�erent modellings{ whi
h seems adequate tothe use of relaxation labelling algorithm, while keeping the attra
tive of being easily readableand the ability of a

epting either manually written or automati
ally derived 
onstraints.Other algorithms may require a di�erent modelling1.3.1.2 Appli
ation of multi-feature modelsThe used language model is based on 
ontext 
onstraints whi
h restri
t the values that aword feature may take, depending on the features of neighbour words. It is able to representdi�erent features for ea
h word (i.e. part-of-spee
h, lemma, semanti
 properties, et
.). Neitherthe number of features nor their meaning are restri
ted in any way.The language model 
onsists of a set of 
onstraints, whi
h relate the features of a wordwith those of the words in the 
ontext, and state whether that situation is very likely or veryunlikely to happen.Sin
e this s
hema is similar to that of Constraint Grammars [Karlsson et al. 95℄, we willuse their formalism be
ause its expressive power suits our needs and its widespread di�usionwill simplify the task of obtaining hand-written language models. Original Constraint Gram-mars only state if su
h situations are possible and must be sele
ted (SELECT 
onstraints) orimpossible and must be dis
arded (REMOVE 
onstraints). Our extension introdu
es a new
lass of 
onstraints: those to whi
h a numeri
al 
ompatibility value is assigned. This value



1.3. SUMMARY 7may range from a large positive value (very 
ompatible) to a large negative value (very in
om-patible) with all intermediate degrees. The SELECT/REMOVE 
onstraints are interpretedas stating a very strong 
ompatibility/in
ompatibility value.1.3.1.3 Appli
ation of statisti
al-linguisti
 hybrid modelsThe 
hoi
e to model language through a set of 
onstraints, ea
h of them asso
iated to a
ompatibility value, makes it possible to merge knowledge a
quired from multiple sour
es.The way to a
hieve this is 
onverting the di�erent sour
e knowledges to the 
ommon formalismof our language model.The hand{written 
onstraints 
an be written dire
tly in the desired formalism, and theautomati
ally obtained models 
an be easily translated to the 
ommon representation basedon weighted 
onstraints.For instan
e, a n-gram model 
an be 
onverted to a set of 
onstraints {one for ea
h n-gram{whi
h will have a 
ompatibility value 
omputed a

ording to the n-gram probability. In thesame way, a ma
hine{learned model 
onsisting of statisti
al de
ision trees 
an be 
onvertedinto a set of 
onstraints {one for ea
h tree bran
h{ with a 
ompatibility value 
omputed fromthe 
onditional probabilities of the leaf nodes. Also, a representation 
onsisting of a ve
tor of
ontext words for ea
h sense (as in [Yarowsky 92℄) 
ould be 
onverted to a set of 
onstraints{one for ea
h pair sense plus 
ontext word in its ve
tor{ with a 
ompatibility depending onthe relevan
e probability of that pair. Equally, a model based on 
on
eptual distan
e betweensenses (e.g. [Sussna 93℄) 
an be 
onverted to 
onstraints with 
ompatibility values 
omputedfrom that distan
e measure.All those 
ompatibility values 
an be 
omputed from probabilities in many ways, as de-tailed in se
tion 3.3.So, we 
an produ
e hybrid models with 
onstraints obtained from any sour
e 
ombiningthem in any desired proportion, by means of translating them all to a 
ommon formalism. Inour 
ase we 
hose that formalism to be an extension of Constraint Grammars, due to their
exibility, su

essful performan
e and widespread di�usion.1.3.1.4 Simultaneous resolution of NLP tasksDue to the multi-feature nature of 
onstraints, and to the parallel way in whi
h relaxationapplies them, the algorithm 
an sele
t simultaneously the 
ombination of values for severallinguisti
 features that best suit a word in a 
ertain 
ontext, that its, it 
an solve di�erentNLP disambiguation tasks at the same time, taking advantage of the intera
tions betweenthem.For instan
e, if we have POS and sense ambiguities, we will have for ea
h word severalpossible readings in the form of pairs (POS; sense). The model 
an 
ontain 
onstraintssele
ting {or refusing{ one POS, one sense, or one pair for that word in the 
urrent 
ontext.Obviously, the 
onstraints on only one feature, will a�e
t all the pairs that 
ontain it. At theend, the pair with has 
olle
ted more positive 
ontributions will be sele
ted and thus a POSand a sense will be assigned to the word, i.e. it will have the two features disambiguated, andthe disambiguation has not been performed in a 
lassi
al 
as
ade-style but in parallel.



8 CHAPTER 1. INTRODUCTION1.3.2 OverviewThe organization of rest of the thesis is presented in this se
tion. After a state of the artsummary in 
hapter 2, 
hapter 3 des
ribes the relaxation algorithm and its appli
ation toNLP. Chapters 4 and 5 present experiments performed and results obtained. Finally, 
hapter6 
ontains 
on
lusions yield by this work and outlines further resear
h lines.1.3.2.1 Chapter 2: Disambiguation and Optimization in NLPIn this 
hapter we overview the 
urrent trends in natural language pro
essing, spe
ially on
orpus linguisti
s. A spe
ial attention is paid to disambiguation tasks, sin
e it is the mainissue in this thesis.Items are addressed from the arti�
ial intelligen
e perspe
tive rather than from a linguisti
point of view. Nevertheless, the indispensable 
ontribution and 
omplement that linguisti
smust provide to the presented work, as well as the utility our 
ontribution may represent tothose linguists working on large 
orpora, is also taken into a

ount.We also summarize in this 
hapter previous appli
ations of di�erent optimization algo-rithms to perform NLP tasks, and des
ribe some of the most representatives.1.3.2.2 Chapter 3: Appli
ation of Relaxation Labelling to NLPIn this 
hapter we detail the relaxation labelling algorithm and its possible parameterizations.We dis
uss whi
h ones may be appropriate to our purposes and some related problems.Sin
e the presented algorithm is based on modelling language by means of 
ontext 
on-straints, and the developing of a linguist{written model is highly 
ostly, we also des
ribedi�erent ways to a
quire the knowledge {in the form of 
ontext 
onstraints{ to be used bythe algorithm.1.3.2.3 Chapter 4: Experiments and ResultsIn this 
hapter we des
ribe three groups of performed experiments whi
h were performed onseveral 
orpora and disambiguation tasks, using di�erent parameterizations and knowledgeobtained from various sour
es.The �rst set of experiments aimed to establish the most appropriate parameterization forthe relaxation algorithm when applied to NLP disambiguation tasks. POS tagging was usedas a testben
h task for this purpose.The se
ond group of experiments aimed to perform POS tagging as a

urately as possibleusing relaxation labelling. Di�erent language models were used in this 
ase to test the abilityof the algorithm to integrate 
onstraints obtained from various knowledge sour
es.The last set of experiments 
onsisted of broadening the range of appli
ation to NLP tasksother than POS tagging. It also in
luded experiments on 
ombining di�erent word featuresand on simultaneous resolution of several NLP tasks. The sele
ted tasks were shallow parsingand word sense disambiguation.



1.3. SUMMARY 91.3.2.4 Chapter 5: Comparative Analysis of ResultsThis 
hapter 
ontains a 
omparative analysis of the results obtained by relaxation labellingon the tested tasks.We fo
used on analyzing the in
uen
e of the use of multi-sour
e and/or multi-featureinformation on the obtained results, as well as studying whether parallel task solving yieldssome improvement.Also, the results produ
ed by our system are 
ompared to those of other 
urrent systems.Some 
onsiderations on the evaluation and 
omparison of systems performing NL 
orpuspro
essing are exposed.1.3.2.5 Chapter 6: Con
lusionsIn this 
hapter we summarize the resear
h des
ribed in this thesis and we outline some futurelines of resear
h to improve the performan
e of our system and to broaden the range ofoptimization algorithms applied to NLP.
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Chapter 2Disambiguation and Optimizationin NLPIn the previous 
hapter, we outlined the situation of disambiguation problems inside the NLP�eld, and more parti
ularly in the 
orpus linguisti
s �eld, where the obje
tive is pro
essinglarge amounts of linguisti
 data with reasonable results, rather than obtaining very pre
iseresults over a small set of linguisti
 features.In this 
hapter we will expose in a more detailed way whi
h are the 
urrent trends toapproa
h these problems, and to what extent are optimization methods spread inside theNLP resear
h �eld.First, a general look on usual methods to perform NLP disambiguation tasks is presented.Then, we will des
ribe how those methods are used in parti
ular when fa
ing the two most
ommon disambiguation problems in this �eld: part-of-spee
h tagging and word sense disam-biguation.Se
ond, an overview of how di�erent energy{fun
tion optimization te
hniques have beenapplied to NLP task is presented, and the most representative are des
ribed.2.1 The Disambiguation ProblemNatural Language is an ambiguous mean to transmit information. This may be a desir-able feature for joke-tellers, 
artoonists or humor s
reenplay writers, but it be
omes a greatproblem when one wants a 
omputer to pro
ess information stored in this form.This makes ambiguity to be one of the main problems of NLP, and very probably the onlyone, sin
e all NLP problems 
an be related to some kind of ambiguity.Ambiguity in natural language is manifold. We �nd part-of-spee
h ambiguity (e.g. pastvs. parti
iple in regular verbs), semanti
 ambiguity in polysemi
 words, synta
ti
 ambiguityin parsing (e.g. PP-atta
hment), referen
e ambiguity in anaphora resolution, et
.Methods to deal with ambiguity range from the brute-for
e: 
ompute all the possibili-ties and 
hoose the best one, whi
h be
omes impra
ti
al when dealing with real data su
has linguisti
 
orpora; to more 
lever language representations whi
h avoid the 
ombinatoryexplosion by taking into a

ount the frequen
y, probability, or any other 
riterion to sele
tthe best solution. 11



12 CHAPTER 2. DISAMBIGUATION AND OPTIMIZATION IN NLPTo enable a 
omputer system to pro
ess natural language, it is required that language ismodelled in some way, that is, that the phenomena o

urring in language are 
hara
terizedand 
aptured, in su
h a way that it 
an be used to predi
t or re
ognize future uses of language:[Rosenfeld 94℄ de�nes language modelling as the attempt to 
hara
terize, 
apture and exploitregularities in natural language, and states that the need of language modelling arises fromthe great deal of variability and un
ertainty present in natural language.Di�erent methods to pro
ess NL derive from di�erent approa
hes to language modelling.These methods 
an be 
lassi�ed into three broad families, although, obviously, there existalso methods that would �t in more than one {an thus they may be 
onsidered as hybrid{ orthat do not �t well in any 
ategory.First, the linguisti
 or knowledge{based family, where language is modelled by a linguistwho tries to explain the behaviour of ambiguity using some unambiguous formalism. Somerepresentative examples of this 
lass are the works by [Voutilainen 94, O
azer & T�ur 97℄,where a large hand-written 
onstraint grammar is used to perform part-of-spee
h tagging.Se
ond, we �nd the statisti
al family, where the language model is left to a data-
olle
tionpro
ess whi
h stores thousands of o

urren
es of some kind of linguisti
 phenomenon and triesto derive a statisti
al law from them. This model a
quisition is known as training. Two mainpoints of view are used in this family, the Bayesian point of view and the Information Theorypoint of view. Both of them rely on the estimation of o

urren
e probabilities for ea
h relevantevent, but while the former tries to obtain them 
omputing the number of event o

urren
es(Maximum Likelihood Estimation) {whi
h may 
ause problems when an event is infrequentor data are s
ar
e{ the later is based on assuming maximum ignoran
e and trying to minimizethe model entropy, thus unobserved events will only keep maximum un
ertainty.Statisti
al methods 
onstitute a very large family, and the one that has reported mostsu

essful results to NLP �eld in re
ent years. Some examples are the works by [Rabiner 90℄who presents a tutorial on Hidden Markov Models and their appli
ation to spee
h re
og-nition, or [Kupie
 91, Bris
oe 94℄ who apply statisti
al methods to grammar developmentand parsing. Other works on NLP using statisti
al models are that of [Matsukawa 93,M
Keown & Hatzivassiloglou 93℄, who learn to 
luster similar words, and [Brants et al. 97℄who identify the grammati
al fun
tion of ea
h word in a senten
e. Statisti
al methods havebeen spe
ially su

essful {sin
e the 1970s to nowadays{ when applied to spee
h re
ognitiontasks [Rabiner 90, Huang et al. 93, Heeman & Allen 97℄. This su

ess 
aused that they werealso used in other NLP areas, su
h as opti
al 
hara
ter re
ognition, spelling 
orre
tion, POStagging, parsing, translation, lexi
ography, text 
ompression and information retrieval.Finally, the ma
hine-learning family, where the model a
quisition is also automati
, butthe knowledge a
quired belongs to a higher level than simple o

urren
e frequen
ies. For in-stan
e, [Yarowsky 94℄ learns de
ision lists to properly restore a

ents in Spanish and Fren
htexts, the system des
ribed [Daelemans et al. 96b℄ learns morphologi
al rules, and as a se
-ondary e�e
t, a relevant 
lassi�
ation of phonemes appears, and in [Mooney 96℄, several
lassi
al ma
hine{learning algorithms are applied to learn to disambiguate word senses, andthe results of the di�erent methods 
ompared.The following se
tion summarizes some basi
 issues on linguisti
 
orpora 
ompilation andoverviews some well-known 
orpora. Se
tions 2.1.2 and 2.1.3 summarize the appli
ation ofmethods belonging to the families above to the parti
ular disambiguation problems of POStagging and WSD.



2.1. THE DISAMBIGUATION PROBLEM 132.1.1 Corpuses, 
orpi and 
orporaThe aforementioned su

ess of statisti
al methods in natural language pro
essing would nothave been possible without the existen
e of large amounts of ma
hine-readable text fromwhi
h statisti
al data 
ould be 
olle
ted. A 
ompilation of naturally o

urring linguisti
phenomena in newspapers, literature, parliament a
ts, et
. is known as a linguisti
 
orpus.The 
ompilation of raw text 
orpora is no longer a problem, sin
e nowadays most do
u-ments, books and publi
ations are written on a 
omputer. But 
orpus have a higher linguisti
value when they are annotated, that is, they 
ontain not merely words, but also linguisti
 in-formation on them (part-of-spee
h, syntax analysis, et
.).Although some 
orpus 
ompilation e�orts were started in the 1960s, 
orpus linguisti
s hasrea
hed it highest popularity in re
ent years, mainly due to the su

ess of statisti
al methodsas well as to the in
rease in 
omputational and storing 
apa
ity of 
omputer systems.When a 
orpus 
ompilation proje
t is started, some important issues must be taken intoa

ount.First, whether the 
orpus should be balan
ed or not. This is an open question that hasnot found a de�nitive answer in years. As stated in [Chur
h & Mer
er 93℄, it 
omes down toa tradeo� between quantity and quality: While Ameri
an industrial laboratories (e.g. IBM,ATT&T) tend to favour quantity, the BNC, NERC, and many di
tionary publishers {spe
iallyin Europe{ tend to favour quality. [Biber 93℄ 
laims for quality, sin
e poor sampling methodsor inappropriate assumptions 
an produ
e misleading results.Se
ond, whi
h annotations will be in
luded in the 
orpus, and how will be the anno-tation task performed. Automati
 annotation introdu
es a 
ertain amount of errors in the
orpus, while manual annotation is very expensive in terms of human resour
es. Some re-sear
h aiming to redu
e the human e�ort when annotating training 
orpus is presented in[Engelson & Dagan 96℄. It 
onsists of algorithms whi
h sele
t the most informative samplesthat should be annotated to be later used in training. The same idea is present in the workby [Lehmann et al. 96℄, who developed a database 
ontaining positive and negative examplesof di�erent linguisti
 phenomena, so that a test or training 
orpus fo
used on a 
ertain phe-nomena 
an be build at a low 
ost. See [Atkins et al. 92℄ for further information on 
orpusdesign and development.The most well-known 
orpora are probably the Brown Corpus (BC) and the London-Oslo-Bergen 
orpus (LOB). The BC [Fran
is & Ku�
era 82℄ 
ontains over a million words ofAmeri
an English and was tagged in 1979 using the TAGGIT tagger [Greene & Rubin 71℄plus hand post{edition. The LOB 
orpus 
ontains the same amount of British English andwas also tagged in 1979.Nowadays, 
orpora tend to be mu
h larger, and are 
ompiled mainly through proje
tsand initiatives su
h as the Linguisti
 Data Consortium (LDC), the Consortium for Lexi
alResear
h (CLR), the Ele
troni
 Di
tionary Resear
h (EDR), the European Corpus Initiative(ECI) or the ACL's Data Colle
tion Initiative (ACL/DCI).Those asso
iations provide 
orpora as the Wall Street Journal (WSJ, 300 million words ofAmeri
an English), the Hansard Corpus (bilingual 
orpus 
ontaining 6 years of Canadian Par-liament sessions), the Lan
aster Spoken English Corpus (SEC), the Longman/Lan
aster En-glish Language Corpus, the Nijmegen TOSCA 
orpus, the 200-million-word Bank of English
orpus (BoE) {tagged using the ENGCG environment [J�arvinen 94℄{, or the 100-million-word



14 CHAPTER 2. DISAMBIGUATION AND OPTIMIZATION IN NLPBritish National Corpus (BNC) tagged with the CLAWS tagger [Lee
h et al. 94℄. Surveys onexisting resour
es 
an be found in [Edwards 93, Wilks et al. 96℄.Although most 
orpora limit their annotation level to part-of-spee
h tags, some o�erhigher level annotations and 
onstitute an important sour
e of knowledge for those resear
hingin NLP. We �nd, for instan
e, synta
ti
ally analyzed 
orpora su
h as the Susanne 
orpus, thePenn Treebank (3 million words) [Mar
us et al. 93℄ or the IBM/Lan
aster treebank. Also,SemCor [Miller et al. 93℄ 
ontains over 200; 000 words of the Penn Treebank semanti
allydisambiguated with WordNet synsets. A review of the state of art in using parsed 
orpora
an be found in [Souter & Atwell 94℄.Until a few years ago, the existing 
orpora were all of the English language. Nevertheless,the su

ess and appli
ability of 
orpus in linguisti
s as well as in NLP, has raised a wideinterest and 
aused its qui
k extension to other languages. For instan
e, the Tr�esor de laLange Fran�
aise (TLF) whi
h 
ontains 150 million words of written Fren
h, the LEXESP
orpus [A
ebo et al. 94, Cervell et al. 95℄ that will 
ontain over 5 millions of balan
ed textin Spanish, or the CTILC, whi
h 
ompiles over 50 million words of modern Catalan. A goodinformation sour
e on Spanish lexi
al resour
es is [Instituto Cervantes 96℄.2.1.2 Part-of-spee
h TaggingPOS tagging 
onsists of assigning to ea
h word of a senten
e a part-of-spee
h tag whi
hindi
ates the fun
tion of that word in that spe
i�
 
ontext. Although it depends on how�ne{grained is the used tagset {whi
h may vary from 20 to 500 tags{, it 
an be 
onsideredan easy task, sin
e many words {between 80% and 90%{ either have only one possible part-of-spee
h, or the 
ontext in whi
h they appear restri
ts the 
hoi
e to only one tag. But inthe remaining per
entage of 
ases, the ambiguity solution may be very diÆ
ult to �nd, manytimes requiring semanti
 or even 
ommon sense knowledge.2.1.2.1 Some 
onsiderations on tagger evaluation and 
omparisonWhen evaluating the performan
e of any system, one must be very prudent, sin
e a highera

ura
y per
entage does not ne
essarily mean a better tagging system. Thus, 
omparingtaggers is not as straightforward as it might seem.The fa
tors that a�e
t most the a

ura
y of a tagger are the tagset, and the way in whi
hunknown words are handled. If the tagger uses a statisti
al model, the noise in the train andtest 
orpus also plays a role in distorting the 
omputation of the real tagger performan
e.This issue is further dis
ussed in se
tion 5.1.1.The TagsetWith respe
t to the tagset, the main feature that 
on
erns us is its granularity {whi
h isdire
tly related with its size{.If the tagset is too 
oarse, the tagger a

ura
y will be mu
h higher, sin
e only importantdistin
tions are 
onsidered and thus the task to perform is mu
h easier, but the results wouldsupply an ex
essively poor information.If the tagset is too �ne{grained, the tagger pre
ision will be mu
h lower, be
ause themodel will have to be mu
h ri
her and so, more diÆ
ult to obtain and more likely to 
ontain
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aws1. In addition some very �ne distin
tions may not be solved on synta
ti
 or 
ontextinformation only, but need semanti
 or even pragmati
 knowledge.Some samples of 
ommonly used tagsets 
an be found in [Kren & Samuelsson 97℄, who
lassify the word level tags {su
h as POS tags{ in two 
lasses, a

ording to the number oflinguisti
 dimensions they spe
ify:� Single{dimension tags, whi
h will usually 
ontain the synta
ti
 
ategory of the word,su
h as N, V, ADJ, DET, et
. (noun, verb, adje
tive, determiner, et
.).� Multiple{dimension tags, whi
h in
orporate additional word features su
h as gender,number, person, et
. For instan
e, the tag VIP3S 
ould indi
ate that a word form isverb, indi
ative, present, third person, singular.� Combination of separate multiple dimensions in sets or readings. As in ConstraintGrammars formalism, a word would have a set of labels, ea
h one 
ontaining informa-tion on a single linguisti
 feature. For instan
e, (<SVO> V PRES -SG3 VFIN)states that a word is transitive, verb, present, non-third singular, �nite. This represen-tation has the following advantages: it 
an be graded, that is, one 
an 
hoose whi
hfeatures is interested in and ignore the others, and it also enables the introdu
tion ofnew dimensions, as for instan
e synta
ti
 roles or semanti
 information.Some studies on the tagset size in
uen
e on a tagger results have been done. For instan
e,[S�an
hez & Nieto 95℄ proposed a 479-tag tagset for using the Xerox tagger on Spanish, andlater redu
ed it to 174 tags sin
e the �rst proposal was 
onsidered too �ne{grained for aprobabilisti
 tagger. [Elworthy 94a℄ states that the tagset sizes (48 tags for Penn Treebankand 134 for LOB 
orpus) do not a�e
t greatly to the behaviour patterns of the re-estimationalgorithms. The work in [Bris
oe et al. 94℄ is also related with this topi
, sin
e POS experi-ments on di�erent languages (English, Dut
h, Fren
h and Spanish), ea
h with di�erent 
orpusand tagset were tested and 
ompared.Handling Unknown WordsAnother fa
tor that 
an a�e
t tagger a

ura
y is how are unknown words handled. The mostusual methods are:� Do not 
onsider the possibility of unknown words. That is, assume a morphologi
alanalyzer whi
h gives an analysis for any unknown word. This is usually simulated byanalyzing all the words appearing in the used test 
orpus. Obviously this approa
h willtend to produ
e higher performan
e results, though it is in fa
t less robust than thefollowing.� Assume that unknown words may potentially take any tag {ex
luding those tags 
or-responding to 
losed 
ategories (preposition, determiner, . . . ), whi
h are 
onsidered tobe all known{. Although this is more realisti
 than the previous method, it introdu
esmore noise, and so the reported performan
e will be lower.1If the model is build manually, 
aws will be 
aused by humans, who are error-prone proportionally to the
omplexity of the task. If it is build statisti
ally, huge amounts of data are required to 
orre
tly estimate themodel.
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h are the 
andidate tags for a given unknownword. This is the most robust and powerful solution, and has been applied in di�erentways by several resear
hers. For instan
e, [Meteer et al. 91, Weis
hedel et al. 93℄ takeinto a

ount in
e
tional and derivational endings as well as 
apitalization and hyphen-ation to guess the possible POS tags for a word, while [Adams & Neufeld 93℄ use astatisti
al model of �xed{length suÆxes 
ombined with 
apitalization features to guessthe possibilities for unknown words. [Ren & Perrault 92℄ perform a frequen
y study ofthe 
ases when a word is a
tually unknown or when it is a typewriting error, and a thor-ough sub
lassi�
ation of ea
h 
ase is exposed. Ma
hine learning te
hniques are also usedto deal with unknown words: [Mikheev 96a, Mikheev 96b℄ learns morphologi
al rulesfrom a lexi
on and a 
orpus using unsupervised statisti
al a
quisition. These rules 
anlater be applied to guess the possible tags for an unknown word. [Daelemans et al. 96a℄uses example based learning to identify the possible 
ategories for unknown words, and[M�arquez & Rodr��guez 98℄ apply a de
ision tree learning algorithm to a
quire trees that
an be later used to establish the 
ategories of words not found in the lexi
on.2.1.2.2 Current methods for POS taggingThe existing NLP literature des
ribes many methods and algorithms to redu
e as mu
h aspossible the small per
entage of 
ases in whi
h the POS tag for a word has several possibilities,and even in those 
ases, to 
hoose the most likely one. These methods 
an be 
lassi�edin the three broad groups des
ribed at the beginning of se
tion 2.1: linguisti
, statisti
aland ma
hine{learning family. See [Abney 96℄ for a 
lear survey on kinds of POS taggingte
hniques.The Linguisti
 Approa
hThe linguisti
 approa
h 
onsists of 
oding the ne
essary knowledge in a set of rules writtenby a linguist after introspe
tion. Early systems performed rather bad for nowadays stan-dards (below 80% a

ura
y), like the pioneer TAGGIT [Greene & Rubin 71℄ whi
h was usedto 
reate the initial tagging of the Brown Corpus, whi
h was then hand revised. Later
ame the work by the Nijmegen TOSCA group [Oostdijk 91℄, and more re
ently the devel-opment of Constraint Grammars [Karlsson et al. 95℄ and their appli
ation to POS tagging[Voutilainen 94℄, whi
h 
an be 
onsidered the best existing tagger (99:3% a

ura
y is reported,though not all words are fully disambiguated). Constraint Grammars have also been used tomorphologi
ally disambiguate agglutinative languages as Basque [Aduriz et al. 95℄ or Turkish[O
azer & T�ur 97℄.Although the linguisti
 approa
h produ
es high quality language models that yield gooddisambiguation results, it is a high time-
onsuming one sin
e many years of human resour
esare required to develop a good language model.The Statisti
al Approa
hAnother trend that seems to be the most extended at present {sin
e it requires mu
h lesshuman e�ort{ is the statisti
al approa
h: A statisti
al model of language is used to disam-biguate the word sequen
e. The simplest model would be a most-likely-tag 
hoi
e for ea
hword. A su

essful model during the last years has been modelling the sequen
e of tags in asenten
e as a Hidden Markov Model, and 
omputing the most probable tag sequen
e giventhe word sequen
e. An a

urate overview on the subje
t 
an be found in [Merialdo 94℄.
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al language model, one needs to estimate the model parameters, su
has the probability that a 
ertain word appears with a 
ertain tag, or the probability that atag is followed by another. This estimation is usually done by 
omputing unigram, bigram ortrigram frequen
ies on tagged 
orpora. The CLAWS system [Garside et al. 87℄, whi
h was theprobabilisti
 version of TAGGIT, used bigram information and was improved in [DeRose 88℄by using dynami
 programming. The tagger by [Chur
h 88℄ used the Brown 
orpus as atraining set to build a trigram model.The 
orpora from whi
h frequen
ies are estimated should be disambiguated by hand, inorder to produ
e an a

urate estimation. Although this requires also a big deal of humanwork, it is mu
h less than in the previous approa
h and it is 
urrently be
oming less important,sin
e many tagged 
orpora are available at a low or even zero 
ost. Although these 
orporastill 
ontain tagging errors, they are a good enough starting point, and they are revised andimproved in new releases.To redu
e the amount of hand tagged 
orpora needed to obtain su
h estimations, theBaum-Wel
h re-estimation algorithm [Baum 72℄ was used to improve an initial bigram model{obtained from a small tagged 
orpus, or even, invented by introspe
tion{ iterating over un-tagged data. A famous example is the Xerox tagger des
ribed in [Cutting et al. 92℄, whi
h hasbeen improved and adapted by a number of resear
hers. For instan
e, [S�an
hez & Nieto 95℄transported it to Spanish and enlarged it with an unknown words handler. The Baum-Wel
halgorithm has been also used in [Bris
oe et al. 94℄, who experimented the utility of the algo-rithm on re�ning models for languages di�erent than English and in [Elworthy 94a℄ where athorough study of the 
onditions in whi
h it is worth using the algorithm is presented.Re
ent works [Jung et al. 96, Ng & Lee 96, Saul & Pereira 97℄ try to enlarge the range ofthe algorithms, that is, not to limit them to a �xed-order n{gram, but to be able to 
ombinedi�erent order n{grams, statisti
al information on word morphology, long{distan
e n-grams[Huang et al. 93℄ or triggering pairs [Rosenfeld 94℄.Other works that use a statisti
al-based approa
h are [S
hmid 94a℄ whi
h performs energy-fun
tion optimization using neural nets and [Ludwig 96℄ who disambiguates words on a mor-phologi
al information basis {for very 
exive languages where this is possible{.Results produ
ed by statisti
al taggers are really good, giving about 95%�97% of 
orre
tlytagged words. Some authors try to improve the results by using a set of 
ontext 
onstraintswhi
h are applied to the results of the probabilisti
 tagger, and 
orre
t its most 
ommon errors.[Brill 92, Brill 95, Ro
he & S
habes 95, Aone & Hausman 96℄ use a simple most-likely tagtagger the output of whi
h is 
orre
ted by a set of transformations automati
ally a
quired byan error-driven algorithm. [Moreno-Torres 94℄ uses a bigram statisti
al tagger whose outputis 
orre
ted by a set of linguist{written 
onstraints.There are also hybrid methods that use both knowledge based and statisti
al resour
es,su
h as that of [Tzoukermann et al. 95℄ or the resear
h presented in this thesis [Padr�o 96a,Voutilainen & Padr�o 97, M�arquez & Padr�o 97℄. Comparative dis
ussion on the advantagesand disadvantages of linguisti
 and statisti
al based part-of-spee
h taggers 
an be found in[Chanod & Tapanainen 95, Samuelson & Voutilainen 97℄.The main 
aw of statisti
al taggers is the diÆ
ulty to a

urately estimate the languagemodel. Sin
e the estimation is usually performed through Maximum Likelihood Estimate{that is, the probability assigned to ea
h event is proportional to the number of times it
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urred in the training data{, and sin
e MLE does not waste any probability mass for eventsnot appearing in the training 
orpus, the estimation may be more or less a

urate when themodel has a redu
ed number of parameters {e.g. a bigrammodel{, but it turns very ina

uratewhen the number of parameters grows, sin
e the ne
essary amount of training data be
omestoo large. Then, the main problem en
ountered is the low or zero frequen
y events. The mainte
hniques employed to deal with these problems are sket
hed below. Further details 
an befound in [Jelinek 89, Charniak 93, Manning & S
h�utze 96℄.Dealing with insuÆ
ient dataThe low or zero frequen
y events produ
e ina

urate estimations for the probability of eventsthat happen s
ar
ely in the training set, for instan
e, if event A is observed to happen on
eand event B to happen twi
e, the estimated probability would be double for B than for A,when this is not ne
essarily true.The zero{frequen
y events problem is even worse, sin
e zero probability is assigned toevents not observed in the training 
orpus, when they are not ne
essarily impossible to happen.Te
hniques to deal with s
ar
e events may 
onsist either of re-arranging the probabilitymass in order to keep a part of it for unobserved events, or of 
ombining information fromdi�erent sour
es, sin
e only one sour
e is not reliable. The most usual te
hniques are smooth-ing, ba
king-o� and Maximum Entropy modelling, whi
h in
lude methods belonging to bothkinds.Smoothing. Smoothing 
an be done through 
ount re-estimation methods su
h as Add{One {also known as Lapla
e's law (1775){ or Good{Turing estimation [Good 53℄, or eitherby relying on lower{order data, that is, through linear interpolation (also 
alled deletedinterpolation).Count re-estimation methods try to 
orre
t the false estimations of rare events by re-arranging the frequen
y 
ountings before the estimation.Add-One adds one to all frequen
ies, thus avoiding zeroes and redu
ing the proportionbetween rare happening events. Lidstone's law is a variation of Lapla
e's whi
h adds not onebut some smaller positive value �.Good{Turing redistributes the amount of observations to favour those events with less ob-servations. Usually this redistribution is either smoothed or performed only on low{frequen
yevents, be
ause it produ
es unreliable results for high{frequen
y events. [Chur
h & Gale 91℄presents a 
omparison of Add-One and Good-Turing te
hniques.Other methods are those proposed by [Ney & Essen 93℄ who present two alternative mod-els for dis
ounting frequen
ies, in order to distribute them among unseen events, and by[S
hmid 94b℄ who estimates n-gram probabilities using de
ision trees.Smoothing through linear interpolation [Bahl et al 83, Bahl et al 89℄ is performed by 
om-puting the probability of an event as the weighted average of the estimated probabilities forits sub{events. For instan
e, the smoothed probability of a trigram 
ould be 
omputed as theweighted average of the estimated probability for the trigram itself, and for the 
orrespondingbigram and unigram, that is,Ps(xnjxn�1; xn�2) = �1P1(xn) + �2P2(xnjxn�1) + �3P3(xnjxn�1; xn�2),where the optimal values for �i are usually 
omputed with the Estimation Maximization (EM)algorithm [Dempster et al. 77℄.
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king-o�. It is also possible to 
ombine information from di�erent sour
es in the style of[Katz 87℄. This is 
alled ba
k{o�, and 
onsists of using the MLE estimation if the event hasappeared at least k times. Otherwise, the probability of the lower order event is used. Forinstan
e, if a trigram has o

urred less than k times, the 
orresponding bigram probabilitywould be used, provided the bigram has appeared k or more times. If it has not, the unigramprobability would be used. While linear interpolation 
onsists of 
ombining several sour
esgiving a di�erent weight to ea
h one, ba
king{o� 
hooses the best one among the availableinformation sour
es. It 
an be seen as a parti
ular 
ase of linear interpolation where the�i are all zero but the one 
orresponding to the higher order history that has more than kobservations, whi
h is set to 1.Maximum Entropy Estimate. A re
ent approa
h whi
h solves the s
ar
e data problemis Maximum Entropy Estimate, whi
h on the 
ontrary than MLE, assume maximum igno-ran
e (i.e. uniform distribution, maximum entropy) and observed events tend to lower themodel entropy. Under this approa
h, unobserved events do not have zero probability, but themaximum they 
an given the observations. That is, the model does not assume anything thathas not been spe
i�ed.In 
lassi
al MLE approa
hes ea
h knowledge sour
e was used separately to build a model,and those models were then 
ombined. Under the Maximum Entropy approa
h, the model isbuild already 
ombined, and attempts to 
apture the information provided by ea
h knowledgesour
e.Ea
h information sour
e is seen as de�ning a 
onstraint on the model stating that theaverage 
ombined probability for an event equals its desired expe
tation, usually 
omputedfrom the training data.That is, we have a set of 
onstraints on the probabilities of ea
h event mu
h weaker thanthose that would have been obtained by MLE, whi
h would have asserted that the probabilityof an event must equal its desired expe
tation, not in average, but always.On
e the 
onstraints are established, the Generalized Iterative S
aling algorithm (GIS) isused to 
ompute the values for the event probabilities that satisfy all 
onstraints, that is, toobtain a 
ombined probabilisti
 model. If the 
onstraints are 
onsistent, an unique solution{i.e. an unique probability distribution{ is guaranteed to exist and the GIS algorithm isproven to 
onverge to it [Darro
h & Rat
li� 72℄.Summarizing, the Maximum Entropy Prin
iple [Jaines 57, Kullba
k 59℄ 
an be stated asfollows:1. Formulate the di�erent information sour
es as 
onstraints that must be satis�ed by thetarget 
ombined estimate.2. Among all probability distributions that satisfy the 
onstraints, 
hoose the one withhighest entropy.The advantages of the Maximum entropy approa
h over MLE are the following:� The MLE models provided by di�erent information sour
es are usually in
onsistent, there
on
iliation needed to 
ombine them is a
hieved by averaging their answers (linearinterpolation) or by 
hoosing one of them (ba
k-o�). Maximum Entropy approa
h
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onsisten
y be
ause it imposes weaker 
onditions on ea
h informationsour
e.� ME is simple and intuitive. It assumes nothing but the 
onstituent 
onstraints.� The ME approa
h is very general. Probability for any event 
an be 
omputed, andmany kinds of 
onstraints 
an be in
orporated, su
h as long distan
e dependen
ies, or
ompli
ated 
orrelations.� The information in already existing statisti
al language models 
an be absorbed intothe ME estimate.� The GIS algorithm is in
rementally adaptive, that is, new 
onstraints 
an be added atany time. Old 
onstraints 
an be maintained or allowed to relax.� An unique ME solution is guaranteed to exist, and the GIS algorithm to 
onverge to it.The main drawba
ks of this approa
h are:� The GIS algorithm is 
omputationally expensive.� There is no theoreti
al bound to GIS algorithm 
onvergen
e rate.� If in
onsistent 
onstraints are used the existen
e, uniqueness and 
onvergen
e theoremsmay not hold.As a summary, we 
an say that ME approa
h avoids the problems that raise from thelow-frequen
y events when using MLE, and that it builds a model whi
h 
orre
tly 
ombinesinformation provided by di�erent knowledge sour
es. This issue is 
losely related to thework presented in this thesis, sin
e it also des
ribes a method to 
ombine di�erent sour
es ofknowledge.For further details on the ME approa
h, see [Lau et al. 93, Rosenfeld 94, Ristad 97℄.The Ma
hine{Learning Approa
hThe third family is represented by authors who use learning algorithms whi
h a
quire alanguage model from a training 
orpus, in su
h a way that the learned model in
ludesmore sophisti
ated information than a n-gram model: For instan
e, [M�arquez & Padr�o 97,M�arquez & Rodr��guez 97℄ learn statisti
al de
ision trees from a tagged 
orpora. A similaridea is that of [Daelemans et al. 96a℄ who use an example{based learning te
hnique and adistan
e measure to de
ide whi
h of the previously learned examples is more similar to theword to be tagged. The same idea is used in [Matsukawa et al. 93℄, but the learned exam-ples are used there to 
orre
t the most frequent errors made by a Japanese word segmentator.[Samuelson et al. 96℄ a
quires Constraint Grammars from tagged 
orpora taking into a

ountthe tags that appear between pairs of tags whi
h never o

ur 
onse
utive in training 
orpora.The above referen
ed [Brill 92, Brill 95℄ 
an also be 
onsidered as belonging to this group,sin
e the algorithm automati
ally learns the series of transformations whi
h best repair themost 
ommon errors made by a most{likely{tag tagger. A variant of his method is used by[O
azer & T�ur 96℄, who present a hybrid system whi
h 
ombines hand{written ConstraintGrammars with automati
ally a
quired Brill{like error{driven 
onstraints.
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 Tagging: Word Sense DisambiguationWord sense disambiguation (or word sense sele
tion) 
onsists of, given a senten
e, assigningto ea
h 
ontent word a sense label indi
ating whi
h is the right meaning for the word in that
ontext.The above de�nition for the WSD task leaves open the question of how and what shouldsense labels be. The problem here is similar to that of tagset granularity on POS tagging,sin
e we 
an sele
t as sense labels a very 
oarse division, su
h as a topi
 or area identi�er, or avery �ne{grained division su
h as a pointer to a sense entry in a Ma
hine Readable Di
tionary(MRD) or in a word taxonomy.If we 
hoose a 
oarse division, the disambiguation task would be easier, but some slightsense distin
tions will be lost. For instan
e, if we 
hoose that that word host has three possiblesenses: <person>, <life-form> and <horde>, we will not be able to distinguish between the<master-of-
eremonies> and the <innkeeper> senses, whi
h will both be subsumed underthe <person> label. On the other hand, if we 
hoose very �ne{grained sense labels {as usualMRD entries are{, some ambiguities will be unsolvable, as for instan
e, the di�eren
e betweenthe senses <interior-designer> and <ornamentalist> for word de
orator.Semanti
 labels sets 
an range from a few dozens to thousands of tags. For instan
e, therewould be 11 di�erent possible semanti
 
ategories for nouns and 573 for verbs if the senselabels were 
hosen to be WordNet top synsets2, and 26 for nouns and 15 for verbs if the 
hosenlabels were WN �le 
odes. The Roget's International Thesaurus [Chapman 77℄ distinguishes1; 042 themati
 
ategories. Finally, if we 
hose as sense labels the WordNet synset 
odes,there would be 60; 557 possible noun semanti
 
lasses and 11; 363 for verbs.The variability in the sense granularity is an issue that makes it very diÆ
ult to 
omparethe a

ura
y of di�erent sense disambiguation systems, but there are other fa
tors whi
hmake the performan
e reported by di�erent systems to vary greatly. Those fa
tors in
ludein the �rst pla
e the kind of knowledge used and the sour
e from whi
h it is obtained {itwould seem logi
al that the performan
e of a system using statisti
ally knowledge a
quiredin an unsupervised way was mu
h lower than that of system based on hand{
oded semanti
knowledge{. Se
ond, the amount of 
ontext 
onsidered by the disambiguation te
hnique usedto apply that knowledge {no 
ontext at all, lo
al 
ontext, full 
ontext, . . . {. And third,how is the system evaluation performed {over all words, over words in a 
ertain synta
ti
al
ategory (e.g. nouns), over a 
hosen subset of words, . . . {. Some steps have been done[Gale et al. 92b, Miller et al. 94℄ towards establishing a 
ommon baseline for enabling WSDsystems 
omparison.A broad 
lassi�
ation of the 
urrently existing systems 
onsidered from the point of viewof the kind of knowledge they use are the linguisti
 or knowledge{based, the statisti
al, andthe hybrid families.The Knowledge{Based Approa
hMethods in the �rst family are those whi
h rely on linguisti
 knowledge, whi
h is usuallyobtained through lexi
ographer introspe
tion [Hirst 87℄.This knowledge may take the form of a Ma
hine Readable Di
tionary (MRD), as in the
ase of [Lesk86℄, who proposes a method for guessing the right sense in a given 
ontext by2WordNet [Miller et al. 91℄ is a 
on
ept hierar
hy, where ea
h sense is represented by a set of synonymwords (a synset). In addition, synsets are grouped in themati
 �les, ea
h one with its own �le 
ode.
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ounting word overlaps between di
tionary de�nitions, or [Cowie et al. 92℄, who use the sameidea but avoiding the 
ombinatory explosion by using simulated annealing. Di
tionary def-initions are also used by [Guthrie et al. 91℄ to 
olle
t lists of salient words for ea
h subje
tsemanti
 
ode of words in LDOCE3. The 
o-o

urren
e data a
quired in this way were laterused by [Wilks et al. 93℄ to 
onstru
t 
ontext word ve
tors for ea
h word and for ea
h sense.[Harley 94, Harley & Glennon 97℄ present a multi-tagger, whi
h 
ombines di�erent informa-tion sour
es (POS, domain, 
ollo
ations, . . . ) 
ontained in the 
ompletely 
oded CambridgeInternational Di
tionary of English (CIDE), to assign to ea
h word an unique entry in thedi
tionary, and thus disambiguating it at several levels (POS, sense, lemma, . . . ).Nevertheless, sin
e di
tionaries {even when they are ma
hine readable{ are intended forhuman users, they 
ontain loosely stru
tured knowledge whi
h often relies on 
ommon sense.Thus, if we want a 
omputer system to use that knowledge, it is ne
essary to extra
t theknowledge 
ontained in the MRD and put it in a more tightly stru
tured format. Worksrelating to this kind of knowledge extra
tion are des
ribed in [Dolan et al. 93, Wilks et al. 93,Rigau 97℄.Another possibility is the use of knowledge not from a human{oriented sour
e su
has a MRD, but in the form of a thesaurus or a 
on
eptual taxonomy su
h as WordNet[Miller et al. 91℄. For instan
e, [Cu

hiarelli & Velardi 97℄ use a thesaurus obtained by sele
t-ing from WordNet a subset of domain{appropriate 
ategories that redu
e WordNet overambi-guity. The work presented in [Atserias et al. 97℄ uses di�erent unsupervised lexi
al methods{whi
h handle sour
es in
luding monolingual and bilingual di
tionaries{ to link ea
h sense ina language other than English to an unique WordNet synset, in order to enable the automati

onstru
tion of multilingual WordNets.The taxonomy 
an be used dire
tly, as a lexi
al sour
e, or else taking advantage of thelexi
al relationships en
oded in the hierar
hy. [Sussna 93℄ measures the 
on
eptual distan
ebetween senses to improve pre
ision during do
ument indexing, assuming that 
o-o

urringwords will tend to have 
lose senses in the taxonomy. The idea is extended to the notionof 
on
eptual density by [Agirre & Rigau 95, Agirre & Rigau 96℄, who instead of minimizingpairwise sense distan
e, try to maximize the density of the senses for all words in the senten
e.[Rigau 94℄ presents a methodology to enri
h di
tionary senses with semanti
 tags extra
tedfrom WN, using a 
on
eptual distan
e measure.The Statisti
al Approa
hThe se
ond broad group uses knowledge obtained from statisti
al pro
essing of 
orporaeither tagged (supervised training) or untagged (unsupervised training). Most of the systemsrely on unsupervised training, sin
e semanti
ally annotated 
orpora are generally less availablethan 
orpora with other kinds of annotation.The 
olle
ted statisti
s 
an be lexi
al statisti
s {su
h as mutual information, relativeentropy, or merely frequen
ies of words and senses{, or lexi
al distributions, i.e. 
omputingand 
omparing distribution of senses respe
t to a 
ontext {generally word forms{.Among the unsupervised te
hniques, we �nd the work by [Brown et al. 91℄, who extra
teda statisti
al model from the bilingual Hansard Corpus, and by [Yarowsky 92℄, who 
olle
tsword 
lasses 
o-o

urren
es from unsupervised 
orpus, under the assumption that the signalover
omes the noise. Although [S
h�utze 92℄ uses unannotated data for training, his model3LDOCE stands for Longman's Di
tionary Of Contemporary English.
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quisition pro
edure is not 
ompletely unsupervised: After the 
ontext ve
tor based auto-mati
 generation of 
lusters from 
orpus 
o-o

urren
e data, a manual post{pro
ess to assignea
h sense to a 
luster is performed. In [S
h�utze & Pedersen 95℄ the idea is extended withthe use of se
ond{order 
o-o

urren
es, 
ontext ve
tors are automati
ally 
lustered in 
lassesrepresenting word senses, and word o

urren
es are disambiguated by assigning them to their
losest 
luster.On the side of the supervised methods, [Gale et al. 92a, Gale et al. 93℄ {following the ideaof [Dagan et al. 91℄ whi
h states that two languages are better than one{ use the bilingualHansard Corpus and 
onsider the Fren
h translation of a word as a semanti
 tag, assumingthat di�erent senses will 
orrespond to di�erent Fren
h words, thus the Hansard Corpus
an be seen as semanti
ally disambiguated. Obviously this does not hold for all words, soexperiments are limited to some spe
i�
 words.Another important feature of statisti
al based systems is the amount of 
ontext they
onsider when a
quiring or applying the statisti
al model. From this point of view, we �ndthe whole range of possibilities, from no 
ontext at all to 
onsidering all the do
ument asrelevant 
ontext for ea
h word.Some methods use no 
ontext at all, su
h as [Gale et al. 92b, Miller et al. 94℄ who des
ribetwo baseline ben
hmarks based on no 
ontext information (guessing and most likely) and onebased on very lo
al 
o-o

urren
e information.Methods whi
h rely on lo
al 
ontext information are those whi
h 
onsider only the wordsin a small window (5 to 10 words) or in the same senten
e than the fo
us word. The underlyingidea in this approa
h is stated in [Yarowsky 93℄ as the one sense per 
ollo
ation prin
iple: thesame words are likely to have the same meanings if they o

ur in similar lo
al 
ontexts. Someauthors using this idea are [Bru
e & Wiebe 94a, Bru
e & Wiebe 94b℄, who de
ompose theprobabilisti
 model that would result of taking several lo
al 
ontext features (morphologi
al,
ollo
ation, POS, . . . ) as interdependent, and [Pedersen & Bru
e 97℄ who 
ompare threestatisti
al language model a
quisition algorithms, using either lo
al or global 
ontext features.[Lin 97℄ uses also lo
al features, but 
onverting Yarowsky's one sense per 
ollo
ation prin
ipleto a more 
exible version: di�erent words are likely to have similar meanings if they o

urin identi
al lo
al 
ontexts. This adaptation enables disambiguating the sense of a word, eventhough one has not 
olle
ted its typi
al 
ontexts, by using the 
ontexts of similar senses.Finally, some methods rely on global 
ontext information, whi
h 
orresponds to the onesense per dis
ourse prin
iple [Gale et al. 92a℄. For instan
e, [Yarowsky 92, Gale et al. 93℄
ompute the salient words ve
tor for ea
h 
lass on a global 
ontext basis. [Yarowsky 95℄,who relies in both one sense per 
ollo
ation and one sense per dis
ourse prin
iples, usesan unsupervised in
remental algorithm to 
lassify o

urren
es of a given word in one of itspossible 
lasses. The algorithm 
onsists of a 
y
ling 
orpus{based pro
edure whi
h 
olle
tslo
al 
ontext features (basi
ally salient words lists) whi
h 
an later be used for WSD.A 
omparison between di�erent statisti
al methods 
an be found in [Lea
o
k et al. 95℄:Bayesian, neural networks, and 
ontent ve
tors are 
ompared at performing word sense dis-ambiguation.Hybrid Approa
hesThe last group in
ludes those methods whi
h mix statisti
al and linguisti
 knowledge.The 
urrent trend is to 
ombine one or more lexi
al knowledge sour
es {either stru
tured ornon-stru
tured{ su
h as 
orpora, MRDs, Lexi
al Knowledge Bases, thesauri, taxonomies, et
.,
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hniques whi
h usually 
onsist of di�erent similarity or distan
e measuresbetween lexi
al units.For instan
e, [Liddy & Paik 92℄ use LDOCE subje
t semanti
 
odes and the WSJ 
orpusfor 
omputing a subje
t-
ode 
orrelation matrix whi
h is later used for word sense disambigua-tion. [Karov & Edelman 96℄ des
ribe a system whi
h learns from a 
orpus a set of typi
alusages for ea
h word sense, using as training 
ontexts those of the words appearing in thesense de�nition in an MRD. Newly appearing o

urren
es are 
ompared with the trainingdata using a similarity fun
tion.Although the learning algorithm des
ribed in [Yarowsky 95℄ is of statisti
al nature, hepoints out that it is useful using MRD de�nitions to 
olle
t the seed words needed to startthe iterative a
quisition pro
edure.There is also the approa
h of [Ribas 95℄, who uses WordNet as a lexi
al resour
e, 
ombinedwith an asso
iation ratio based algorithm, to automati
ally extra
t sele
tional restri
tionsfrom 
orpora, whi
h are then used to disambiguate the noun senses that are heads of verb
omplement phrases. [Resnik 93, Resnik 95a, Ri
hardson et al. 94, Resnik 95b℄ present amethod for automati
 WSD based on an information 
ontent measure. The similarity betweentwo 
lasses is 
omputed as the information 
ontent of their lowest 
ommon hyperonym inWordNet hierar
hy. The information 
ontent of a 
lass is proportional to its o

urren
eprobability, whi
h is estimated from a 
orpus.The work by [Peh & Ng 97℄ presents the 
ombination the mapping of a domain-spe
i�
hierar
hy onto WordNet with semanti
 distan
e metri
s to get a wide{
overage method fordisambiguating semanti
 
lasses.A multi-resour
e 
ombination system is that of [Rigau et al. 97℄, who 
ombine severalheuristi
s {most of them statisti
al, but knowledge based lexi
al resour
es su
h as WordNetare also used{ in a weighting approa
h to disambiguate word senses. The used te
hniquesand lexi
al resour
es range from naive most{likely sense assignation to 
ontent ve
tor repre-sentations built from MRDs, through di�erent similarity measures.Other methods that may be 
onsidered hybrid are those that 
ombine more or less sophis-ti
ated lexi
al resour
es with ma
hine learning algorithms, to automati
ally derive a languagemodel oriented to WSD. Samples of this approa
h are the work by [Siegel 97℄, who uses ma-
hine learning algorithms to a
quire a model 
apable of 
lassifying verbs as state or event,or by [Mooney 96℄, who 
ompares seven 
lassi
al learning algorithms (in
luding neural nets,statisti
al te
hniques and de
ision-trees) at the task of disambiguating among six senses forthe word line, using lo
al 
ontext information. [Ng & Lee 96℄ presents an example{basedsystem whi
h a
quires a model that integrates di�erent knowledge sour
es, in
luding POStags, morphology, word 
o-o

urren
es, and verb{obje
t synta
ti
 relationships.2.2 Optimization Te
hniques in NLPIn this se
tion we will overview the optimization te
hniques most 
ommonly used in Arti�
ialIntelligen
e, and summarize how have they been applied to natural language pro
essing.We understand by optimization any te
hnique that leads to maximize/minimize an {either expli
it or impli
it{ obje
tive fun
tion. We 
an �nd gradient step or mathemati
alprogramming in any 
lassi
al Operational Resear
h 
ourse, or approa
hes as neural nets or
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 algorithms in more re
ent works. See [Gu 94℄ for a review on di�erent optimizationalgorithms.Although optimization te
hniques have not been applied to NLP in a generalized way,we 
an �nd several uses in the literature, whi
h had represented a great su

ess in the �eld,su
h as those of [DeRose 88℄ who optimized the speed of [Garside et al. 87℄ tagger by meansof dynami
 programming {whi
h is more or less the same that the well{known Viterbi al-gorithm [Viterbi 67℄ does{, the use of simulated annealing to disambiguate word senses in[Cowie et al. 92℄, the neural net POS tagger in [S
hmid 94a℄, or the paraphrasing algorithmin [Dras 97℄.We �nd a more extended use of optimization algorithms for model estimation. For in-stan
e, the well known Baum-Wel
h algorithm [Baum 72℄ used in [Kupie
 92, Elworthy 94a℄,or the Expe
tation Maximization (EM) algorithm [Dempster et al. 77℄ 
ommonly used toperform linear interpolation smoothing, or as in the 
ase of [Pedersen & Bru
e 97℄, to disam-biguate word senses.The re
ent Maximum Entropy approa
h 
an also be 
onsidered as using optimizationmethods, sin
e the GIS algorithm used to sele
t the most appropriate probability distribution,is a
tually a maximization algorithm to pi
k the maximum entropy model.2.2.1 Neural NetsNeural nets are models that rely on the intera
tion between a large number of simple 
om-puting units (neurons) 
onne
ted to other units in the net. When a neuron is a
tive, it 
ausesa neighbour 
ell to be
ome a
tive provided that the neuron a
tivity level is high enough, andthat the link that 
onne
ts them has enough weight or strength.Neural nets were originally developed to model human brain physiology, and soon werefound to have interesting 
omputing 
apabilities. Neural nets are energy-fun
tion optimizersthat 
an be trained to learn a task 
onsisting of produ
ing a 
ertain output when supplied a
ertain input. When properly trained, neural nets have generalization abilities, that is, theyare able to generate the right output when fa
ed to a never seen input.Knowledge is stored in neural nets in the form of link weights. When an input is presented,the produ
ed output depends on how is this input propagated through the net, whi
h isobviously a fun
tion of the link weights. Thus, training a neural net 
onsists of 
omputingthe right weight for ea
h link. This is usually done through an iterative error minimizationalgorithm, su
h as the well known ba
kpropagation algorithm.Those interested in neural nets, 
an �nd further introdu
tory information to the �eld inthe books by [M
Lelland & Rumelhart 84, Kosko 90℄.Due to their learning abilities, and to the su

ess obtained in other �elds, neural nets havebeen applied to NLP by several authors. The most widely used are feed{forward nets. Butsin
e they 
an pro
ess only �xed-length input, re
urrent neural nets [Elman 88℄ {whi
h donot present this restri
tion{ are more 
ommonly used in NLP.Some general reviews on this area 
an be found in [Reilly & Sharkey 92, Miikkulainen 93,Feldman 93℄. Some sample systems are those of [S
hmid 94a℄, who performs POS taggingusing a feed{forward net, or [Wermter 95℄ whi
h des
ribes a symboli
-
onne
tionist hybridsystem. [Lawren
e et al. 95℄ perform grammati
al inferen
e {in fa
t, the net learns to distin-guish grammati
al senten
es, although no grammar is inferred{, and [Collier 96℄ uses Hop�eldnetworks to store and re
all patterns of natural language senten
es.
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 AlgorithmsGeneti
 algorithms are also energy fun
tion optimizers. They are based on the idea thatevolution and natural sele
tion produ
e solutions whi
h are optimally adapted to the envi-ronment.One starts with a population of random solutions {or almost random to save 
onvergen
etime{. Solutions are 
oded as a sequen
e of features or genes, all possible values of whi
hshould be present in the starting population. The solutions are 
ombined in pairs (or any orderreprodu
tion groups) to 
reate new solutions that will have features (genes) from both (or all)of their parents. Only the best solutions (the �ttest ones) are allowed to survive and pro
reate.The �tness of a solution is evaluated through a �tness fun
tion. This kind of natural sele
tionleads to an improvement of the solution population generation after generation, until it rea
hesan optimum. Mutation 
an also be in
luded as small random 
hanges in des
enden
e genesto avoid lo
al optima.For further details on Geneti
 Algorithms te
hniques and their appli
ations see the booksby [Holland 92, Goldberg 89℄Geneti
 algorithms have also been used in NLP, though to a mu
h minor extent than neuralnets. For instan
e, [Smith & Witten 95℄ used geneti
 algorithms to perform grammati
alinferen
e from a set of sample senten
es.2.2.3 Simulated AnnealingSimulated annealing is an optimization algorithm whi
h is based on metal annealing pro
essesseen from the point of view of statisti
al me
hani
s.The pro
ess starts with a high temperature, whi
h 
auses the 
urrent state to be unstable,and very likely to 
hange. The state is 
hanged always in the maximum gain dire
tion, butthe temperature 
omponent 
an make it 
hange in a more random way. As the temperaturede
reases and the solution approa
hes the optimum, the random 
omponent is less and lessimportant.Simulated annealing obeys the Boltzmann distribution whi
h has been proven to lead toa global optimum if the temperature de
rease is slow enough. Further details on its relation-ship with relaxation pro
esses and Boltzmann ma
hines 
an be found in [Aarts & Korst 87℄.In [Kirkpatri
k et al. 83℄ one 
an �nd more about the optimization properties of simulatedannealing.The work by [Cowie et al. 92, Wilks & Stevenson 97℄ des
ribes the appli
ation of simu-lated annealing to perform WSD. Nevertheless, they use as 
ompatibility 
onstraints only thedi
tionary de�nition overlap for possible senses. Simulated annealing is in fa
t {as des
ribedin 
hapter 3{ a parti
ular 
ase of dis
rete relaxation labelling, thus, more 
omplex 
ompat-ibility 
onstraints {linguisti
ally motivated, statisti
ally a
quired, multi-feature, et
.{ 
ouldbe used with that algorithm.2.2.4 Relaxation LabellingRelaxation is a generi
 name for a family of iterative algorithms whi
h perform fun
tionoptimization, based on lo
al information. They are 
losely related to neural nets [Torras 89℄and gradient step [Larrosa & Meseguer 95b℄.



2.2. OPTIMIZATION TECHNIQUES IN NLP 27Although relaxation operations had been long used in engineering �elds to solve systemsof equations [Southwell 40℄, they did not get their biggest su

ess until their extension tosymboli
 domain {relaxation labelling{ was applied to 
onstraint propagation �eld, spe
iallyin low-level vision problems [Waltz 75, Rosenfeld et al. 76℄.From our point of view, relaxation labelling is a te
hnique that 
an be used to solve
onsistent labelling problems (CLPs) {see [Larrosa & Meseguer 95a℄{. A 
onsistent labellingproblem 
onsists of, given a set of variables, assigning to ea
h variable a value 
ompatiblewith the values of the other ones, satisfying {to the maximum possible extent{ a set of 
om-patibility 
onstraints. Algorithms to solve 
onsistent labelling problems and their 
omplexityare studied in [Nudel 83℄.In the Arti�
ial Intelligen
e �eld, relaxation has been mainly used in 
omputer vision{sin
e it is where it was �rst used{ to address problems su
h as 
orner and edge re
ognitionor line and image smoothing [Lloyd 83, Ri
hards et al. 81℄. Nevertheless, many traditionalAI problems 
an be stated as a labelling problem: the travelling salesman problem, n-queens,or any other 
ombinatorial problem [Aarts & Korst 87℄.The utility of the algorithm to perform NLP tasks was pointed out in [Pelillo & Re�
e 94,Pelillo & MaÆone 94℄, where POS tagging was used as a toy problem to test their meth-ods to improve the 
omputation of 
onstraint 
ompatibility 
oeÆ
ients for relaxation pro-
esses. Nevertheless, the �rst appli
ation to a real NLP problems, on unrestri
ted text is thework presented in this thesis, and published in [Padr�o 96a, Padr�o 96b, M�arquez & Padr�o 97,Voutilainen & Padr�o 97℄, whi
h in addition enables the use of multi{feature 
onstraints 
om-ing from di�erent sour
es.
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Chapter 3Appli
ation of Relaxation Labellingto NLPThis 
hapter dis
usses the use of the relaxation labelling algorithm to perform NLP tasks.To enable the appli
ation of relaxation labelling, the language model must be des
ribed interms of algorithm elements {variables, labels, 
onstraints, et
.{. In our 
ase, the words in thesenten
e to disambiguate will be represented as variables, and the possible values for 
ertainlinguisti
 features (POS, sense, et
.) will 
orrespond to their labels.Although {as pointed out in 
hapter 1{ relaxation labelling has been mainly used in �eldsother than NLP (engineering, 
omputer vision, . . . ), some resear
hers in optimization te
h-niques [Pelillo & Re�
e 94, Pelillo & MaÆone 94℄ have used POS tagging as a toy problemto experiment their methods to improve the performan
e of relaxation labelling. They useda 1000-word test 
orpus, and only binary 
onstraints, whi
h was enough to their purposes oftesting a method for estimating 
onstraint 
ompatibility values. In our 
ase, the aim is POStagging itself, so we will have to use more sophisti
ated information and larger 
orpora.We will des
ribe the relaxation labelling algorithm from a general point of view in se
tion3.1. Afterwards, in se
tion 3.2 we will explain whi
h ones among the des
ribed parameteriza-tions were sele
ted as the most suitable for our purposes, and dis
uss some problems relatedto the 
onvergen
e of the algorithm. Finally, in se
tion 3.3, we will 
onsider di�erent ways toobtain the 
onstraints needed to feed the algorithm.3.1 Algorithm Des
riptionIn this se
tion the relaxation algorithm is des
ribed from a general point of view. Its appli-
ation to NLP tasks will be dis
ussed in se
tion 3.2.Let V = fv1; v2; : : : ; vNg be a set of variables.Let Ti = fti1; ti2; : : : ; timig be the set of possible labels for variable vi (where mi is thenumber of di�erent labels that are possible for vi).Let C be a set of 
onstraints between the labels of the variables. Ea
h 
onstraint is a\
ompatibility value" for a 
ombination of pairs variable{label. For instan
e, the 
onstraint0:53 [(v1; A)(v3; B)℄29



30 CHAPTER 3. APPLICATION OF RELAXATION LABELLING TO NLPstates that the 
ombination of variable v1 having label A, and variable v3 having label B has a
ompatibility value of 0:53. Constraints 
an be of any order, so we 
an de�ne the 
ompatibilityvalue for 
ombinations of any number of variables (obviously we 
an have 
ombinations of atmost N variables).The aim of the algorithm is to �nd a weighted labelling su
h that global 
onsisten
y ismaximized.A weighted labelling is a weight assignation for ea
h possible label of ea
h variable:P = (p1; p2; : : : ; pN ) where ea
h pi is a ve
tor 
ontaining a weight for ea
h possible labelof vi, that is: pi = (pi1; pi2; : : : ; pimi)Sin
e relaxation is an iterative pro
ess, when the time step is relevant, we will note theweight for label j of variable i at time n as pij(n). When the time step is not relevant, we willnote it as pij.Maximizing global 
onsisten
y is de�ned as maximizing for ea
h variable vi, (1 � i � N),the average support for that variable, whi
h is de�ned as the weighted sum of the supportre
eived by ea
h of its possible labels, that is:miXj=1 pij � Sijwhere pij is the weight for label j of variable vi and Sij is the support re
eived by that pairfrom the 
ontext. The support for the pair variable{label expresses how 
ompatible that pairis with the labels of neighbouring variables, a

ording to the 
onstraint set (see se
tion 3.1.1).The performed global 
onsisten
y maximization is a ve
tor optimization. It does notmaximize {as one might think{ the sum of the supports of all variables. It �nds a weightedlabelling su
h that any other 
hoi
e would not in
rease the support for any variable given {of
ourse{ that su
h a labelling exists. If su
h a labelling does not exist, the algorithm will endin a lo
al maximum.The relaxation algorithm 
onsists of:� start in a random labelling P0.� for ea
h variable, 
ompute the \support" that ea
h label re
eives from the 
urrentweights for the labels of the other variables (i.e. see how 
ompatible is the 
urrentweighting with the 
urrent weightings of the other variables, given the set of 
onstraints).� Update the weight of ea
h variable label a

ording to the support obtained by ea
hof them (that is, in
rease weight for labels with high support, and de
rease weight forthose with low support).� iterate the pro
ess until a 
onvergen
e 
riterion is met.The support 
omputing and weight 
hanging must be performed in parallel, to avoid that
hanging a weight for a label would a�e
t the support 
omputation of the others.We 
ould summarize this algorithm saying that at ea
h time step, a variable 
hanges itslabel weights depending on how 
ompatible is that label with the labels of the other variables



3.1. ALGORITHM DESCRIPTION 31at that time step. If the 
onstraints are 
onsistent, this pro
ess 
onverges to a state whereea
h variable has weight 1 for one of its labels and weight 0 for all the others.Note that the global 
onsisten
y idea {de�ned as the maximization of the average supportre
eived by ea
h variable from the 
ontext{ makes the algorithm robust, sin
e the problem ofhaving mutually in
ompatible 
onstraints (so one 
an not �nd a 
ombination of label assig-nations whi
h satis�es all the 
onstraints) is solved be
ause relaxation does not (ne
essarily)�nd an ex
lusive 
ombination of labels, that is, an unique label for ea
h variable, but a weightfor ea
h possible label su
h that 
onsisten
y is maximized (the 
onstraints are satis�ed to themaximum possible degree).Advantages of the algorithm are:� Its highly lo
al 
hara
ter (ea
h variable 
an 
ompute its new label weights given onlythe state at previous time step). This makes the algorithm highly parallelizable (we
ould have a pro
essor to 
ompute the new label weights for ea
h variable, or even apro
essor to 
ompute the weight for ea
h label of ea
h variable).� Its expressiveness, sin
e we state the problem in terms of 
onstraints between variablelabels.� Its 
exibility, we do not have to 
he
k absolute 
onsisten
y of 
onstraints.� Its robustness, sin
e it 
an give an answer to problems without an exa
t solution (in-
ompatible 
onstraints, insuÆ
ient data, . . . )� Its ability to �nd lo
ally optimal solutions to NP problems in a non-exponential time(Only if we have an upper bound for the number of iterations, i.e. 
onvergen
e is fastor the algorithm is stopped after a �xed number of iterations).Drawba
ks of the algorithm are:� Its 
ost. Being N the number of variables, v the average number of possible labelsper variable, 
 the average number of 
onstraints per label, and I the average numberof iterations until 
onvergen
e, the average 
ost is N � v � 
 � I, that is, it dependslinearly on N , but for a problem with many labels and 
onstraints, or if 
onvergen
e isnot qui
kly a
hieved, the multiplying terms might be mu
h bigger than N .� Sin
e it a
ts as an approximation of gradient step algorithms, it has their typi
al 
on-vergen
e problems: Found optima are lo
al, and 
onvergen
e is not guaranteed, sin
ethe 
hosen step might be too large for the fun
tion to optimize.� In general, 
onstraints must be written manually, sin
e they are the modelling of theproblem. This is good for easy-to-model domains or redu
ed 
onstraint-set problems,but in the 
ase of POS tagging or WSD 
onstraint are too many and too 
ompli
atedto be written by hand.� The diÆ
ulty to state whi
h is the 
ompatibility value for ea
h 
onstraint. If we dealwith 
ombinatorial problems with an exa
t solution (e.g. travelling salesman), the
onstraints will be all fully 
ompatible (e.g. stating that it is possible to go to any 
ityfrom any other) or fully in
ompatible (e.g. stating that it is not possible to be twi
e in
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ity). But if we try to model more sophisti
ated or less exa
t problems (su
has POS tagging) things will not be bla
k or white. We will have to assign a 
ompatibilityvalue to ea
h 
onstraint.� The diÆ
ulty to 
hoose the support and updating fun
tions more suitable for ea
hparti
ular problem.3.1.1 Support Fun
tionThe relaxation labelling algorithm requires a way to 
ompute whi
h is the support for avariable label given the 
onstraints and the 
urrent label weights for the other variables. Thisis 
alled the support fun
tion and it is the heart of the algorithm, sin
e it is 
losely related towhat will be maximized.To de�ne the support re
eived by a variable label from its 
ontext, we have to 
ombinethe individual in
uen
es of ea
h 
onstraint that 
an be applied for that pair in the 
urrent
ontext. So, we will de�ne Inf(r; i; j) as the in
uen
e of a 
onstraint r on label j for variablei. Its formal de�nition requires some previous steps:DEF: Constraint. A 
onstraint r 
onsists of a 
ompatibility value Cr and its asso
iatedset of pairs variable{label. The 
ompatibility values 
an be restri
ted to a 
ertain interval(e.g. [0; 1℄, [�1; 1℄, [0;+1℄ . . . ), or not restri
ted at all.A 
onstraint expresses a how 
ompatible is a given 
ombination of variable labels. It 
anbe written as follows: Cr [(vi1 ; ti1j1); : : : ; (vinr ; tinrjnr )℄ where 1 � i1; : : : ; inr � N and1 � jk � mik for k = 1 : : : nrwhere nr is the 
onstraint degree, that is, the number of pairs variable{label it involves,and (vi1 ; ti1j1); : : : ; (vinr ; tinrjnr ) are the pairs involved in the 
onstraint.For simpli
ity we will note label j for variable i as tj instead of tij, sin
e the variable iwhi
h the label is applied to is already present in the pair. The previous 
onstraint will thenbe expressed as: Cr [(vi1 ; tj1); : : : ; (vinr ; tjnr )℄DEF: Context weight. Obviously, the in
uen
e of a 
onstraint on a given variable labelis zero if the 
onstraint does not in
lude the pair variable{label. (i.e. that 
onstraint is notapplied). Then, 
onstraints that have an in
uen
e on a given pair (vi; tj) are only those thatin
lude that pair, i.e., those of the form:Cr [(vi1 ; tj1); : : : ; (vi; tj); : : : ; (vinr ; tjnr )℄We de�ne the 
ontext weight for a 
onstraint and a pair variable{label W (r; i; j) as theprodu
t of the 
urrent weights for the labels appearing in the 
onstraint ex
ept (vi; tj), or, ifpreferred, as though the weight for that label was 1.The 
ontext weight states how appli
able the 
onstraint is given the 
urrent 
ontext of(vi; tj). The 
onstraint 
ompatibility value Cr states how 
ompatible the pair is with the
ontext.



3.1. ALGORITHM DESCRIPTION 33Being psq(n) the weight assigned to label tq for variable vs at time n, the 
ontext weightis: W (r; i; j) = pi1j1(n)� : : :� pinrjnr (n)where pij(n) is not in
luded in the produ
t.DEF: Constraint In
uen
e. On
e we have de�ned the 
onstraint 
ompatibility values andthe 
ontext weight, we 
an de�ne the in
uen
e of a 
onstraint on the pair (vi; tj) as:Inf(r; i; j) = Cr �W (r; i; j)DEF: Support. On
e we have 
omputed the in
uen
e for ea
h 
onstraint on the givenlabel of a variable, we 
an 
ompute the total support re
eived by that label 
ombining thein
uen
es of all 
onstraints.Several support fun
tions are used in the literature, depending on the problem addressed,to de�ne the support Sij re
eived by label j of variable i. Di�erent support fun
tions 
or-respond to di�erent ways of 
ombining 
onstraint in
uen
es. See [Kittler & F�oglein 86℄ forfurther details on di�erent possible support fun
tions.� The �rst formula 
omputes the support for a label adding the in
uen
es obtained fromea
h 
onstraints. Depending on the nature of the 
ompatibility values, support valuesmay be negative indi
ating in
ompatibility. This point is dis
ussed in se
tion 3.2.3.Sij =Xr Inf(r; i; j) (3.1)� Another possible formula is adding the in
uen
es of 
onstraints whi
h involve exa
tlythe same variables and multiplying the results afterwards.Sij = YG2P(V )Xr2G Inf(r; i; j) (3.2)where P(V ) is the set of all possible subsets of V (the set of variables).� And �nally, we 
an also pi
k the maximum of the in
uen
es of 
onstraints whi
h involvethe same variables and multiply the results afterwards.Sij = YG2P(V )maxr2G Inf(r; i; j) (3.3)3.1.2 Updating Fun
tionThe algorithm also needs to 
ompute whi
h is the new weight for a variable label, and this
omputation must be done in su
h a way that it 
an be proven to meet a 
ertain 
on-vergen
e 
riterion, at least under appropriate 
onditions1 [Zu
ker et al. 78, Zu
ker et al. 81,Hummel & Zu
ker 83℄.1Convergen
e has been proven under 
ertain 
onditions, but in a 
omplex appli
ation su
h as POS taggingwe will �nd 
ases where it is not ne
essarily a
hieved.
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alled the updating fun
tion and it is used to 
ompute and normalize the newweights for ea
h possible label.Several formulas have been proposed [Rosenfeld et al. 76℄, and some of them have beenproven to be approximations of a gradient step algorithm.The updating formulas must in
rease the weight asso
iated with labels with a highersupport, and de
rease those of labels with lower support. This is a
hieved by multiplyingthe 
urrent weight of a label by a fa
tor depending on the support re
eived by that label.Normalization is performed in order that the weights for all the labels of a variable add upto one.Although ad-ho
 updating fun
tions 
an be used, as in [Deng & Iyengar 96℄, the most
ommonly used formulas are the following:� This formula in
reases the weight for a label when Sij is positive and de
reases it whenSij is negative. Values for Sij must be in [�1; 1℄.pij(n+ 1) = pij(n)� (1 + Sij)miXk=1 pik(n)� (1 + Sik) (3.4)� This formula in
reases the weight when Sij > 1 and de
reases it when Sij < 1. Valuesfor Sij must be in [�1;+1℄. pij(n+ 1) = pij(n)� SijmiXk=1 pik(n)� Sik (3.5)Sin
e the support values Sij are 
omputed using the 
onstraint 
ompatibility values Cr,whi
h may be unbounded, they do not ne
essarily belong to the intervals required byany of the above updating fun
tions. Even in the 
ase that the Cr were bounded, if thesupport 
omputation used was additive (3.1 or 3.2), the �nal support result would notbe guaranteed to be in the required interval.Thus, it will be ne
essary to normalize the �nal support value for ea
h label, in orderto �t in the appropriate interval. This issue is further dis
ussed in se
tion 3.2.4.� The following formula is also used as an updating fun
tion:pij(n+ 1) = eSij=TmiXk=1 eSij=T (3.6)where T is a temperature parameter whi
h de
reases at ea
h time step. The labellingis non-ambiguous in this 
ase (weights are only 0 or 1) and what we 
ompute is theprobability that a variable 
hanges its label. When T is high, 
hanges o

ur randomly.As T de
reases, support values get more in
uen
e.



3.2. ALGORITHM PARAMETERIZATION 35If variables take only one label at ea
h time step (that is, one label has weight 1, andthe others 0) and updating fun
tion 3.6 is used, the pro
edure is 
alled sto
hasti
 relaxation(whi
h is equivalent to simulated annealing), while if label weights are not dis
rete, andthe updating fun
tion is 3.4 or 3.5 we talk about 
ontinuous deterministi
 relaxation. See[Kittler & Illingworth 85, Torras 89℄ for 
lear expositions of what is relaxation labelling andwhat kinds of relaxation 
an we get by 
ombining di�erent support and updating fun
tions.3.2 Algorithm ParameterizationAs des
ribed in se
tion 3.1, relaxation labelling handles variables, labels and 
ompatibility
onstraints. Sin
e we want to use it to perform NLP disambiguation tasks, we have �rst tomodel language in a suitable way for the algorithm.The most dire
t way is to model ea
h word as a variable, and ea
h of its possible readings{either POS-tags, senses, synta
ti
 roles, et
.{ as a possible label for that variable. In thisframework, the 
onstraints will express 
ompatibility between one reading for one word andanother reading for a word in its 
ontext. So we will have 
onstraints stating that a determineris very 
ompatible with a noun to its right, but rather not 
ompatible with a verb.These 
onstraints will state how 
ompatible is, say, label t1 for variable vi with label t2for variable vj (or any other 
ombination of n pairs variable{label). These 
onstraints, their
omplexity, and the kind of information they use (morphologi
al, synta
ti
, semanti
, . . . )will depend on the task we are performing. Di�erent ways to obtain them are des
ribed inse
tion 3.3.On
e we have modelled language in terms of variables, labels and 
onstraints, we have to
hoose the most suitable parameterizations for the algorithm. [Kittler & F�oglein 86℄ studyhow the 
hoi
e of the adequate support and 
ompatibility fun
tions should depend on the
ontextual information to be exploited. Experiments des
ribed in [Padr�o 96a℄ and reportedin se
tion 4.1 were used to determine whi
h are the most useful parameters. The obtainedresults are outlined in the following se
tions.3.2.1 Support Fun
tionIntuitively, the most suitable support fun
tion for NLP tasks seems to be the additive fun
tiondes
ribed in equation 3.1, sin
e it does not multiply 
onstraint in
uen
es.The multipli
ative 
ombination of in
uen
es may produ
e undesirable e�e
ts when dealingwith NLP tasks, sin
e the absen
e of information (in
uen
e zero) would 
ause the �nal resultdrop.In natural language models, it will be very unlikely that we have all imaginable 
onstraints{e.g. all 
ombinations of trigram values{. This means that when a 
onstraint is missing thein
uen
e will be either zero or a tiny value (if we performed some kind of smoothing). Thisis obviously a drawba
k for multipli
ative 
ombination fun
tions, sin
e a la
k of informationsu
h as a missing 
onstraint, does not ne
essarily imply support zero for a label. It seemsmore natural to add the in
uen
es, so when one is missing, it just does not 
ontribute at all.Experiments performed on POS tagging, and reported in [Padr�o 96a, Padr�o 96b℄, 
on�rmthat idea, showing that support fun
tion 3.1 a
hieves better results than the multipli
ativefun
tions 3.2 and 3.3.



36 CHAPTER 3. APPLICATION OF RELAXATION LABELLING TO NLP3.2.2 Updating Fun
tionThe 
hoi
e of the appropriate updating fun
tion is tightly bound to the 
ompatibility valuesnature des
ribed in se
tion 3.2.3. If 
ompatibility values are allowed to be negative {toenable 
onstraints expressing in
ompatibility{ then the support 
omputed for ea
h label maybe negative. This will for
e us to use updating fun
tion 3.4, sin
e it 
an take supports in[�1; 1℄. If our 
ompatibilities are always positive, we 
an then use updating fun
tion 3.5 or3.6.In any 
ase, normalization of supports must be performed to ensure they are in theappropriate interval to be used by the updating fun
tion.Although the support normalization fun
tion 
ould be 
onsidered another algorithm pa-rameter {one 
ould 
hoose straight linear normalization or use some sigmoid-shaped fun
tionsu
h the ar
-tangent or the hyperboli
 tangent{, performed experiments (see [Padr�o 95℄) showthat there is not a signi�
ant di�eren
e between the di�erent normalization fun
tions. Thismade us 
hoose the simplest normalization {linear{ and leave as a parameter its appli
ationdomain interval2. Finding the right normalization interval still requires further studies. Asdis
ussed in se
tion 3.2.4, it seems to depend on the average support per label, although theeasiest way to obtain it is using a part of the training 
orpus as a tuning set.Sin
e performed experiments pointed out that 
omputing 
ompatibility values as mutualinformation produ
es better results than the other tested formulas, and this measure 
an benegative, we will use updating fun
tion 3.4.3.2.3 Compatibility ValuesThe 
onstraints used in relaxation labelling must state a 
ompatibility value for ea
h 
ombi-nation of pairs variable{label. These values may be as simple as �1 for not-
ompatible and+1 for 
ompatible, but the algorithm will perform mu
h better if the 
onstraints are betterinformed.The 
ompatibility value for a 
onstraint states how 
ompatible is one pair word{label(v; t) with a set of pairs in its 
ontext. We 
an either assign them by hand or try to use someprobability or information theory measure to estimate them.That is, we have a 
onstraint of the form:Cr [(vi1 ; tj1); : : : ; (v; t); : : : ; (vinr ; tjnr )℄and we want to 
ompute its Cr. Sin
e Cr must express how 
ompatible is the pair (v; t) withthe 
ontext expressed by the 
onstraint, the possible ways of 
omputing Cr will have to takeinto a

ount the event 
onsisting of an o

urren
e of the pair (v; t), and the event 
onsistingof an o

urren
e of the 
ontext [(vi1 ; tj1); : : : ; (vinr ; tjnr )℄, and see if there is any 
orrelationbetween them.That is, being H the event 
orresponding to an o

urren
e of the pair (v; t) and E theevent of an o

urren
e of the 
ontext des
ribed by the 
onstraint, we 
an 
onsider that Cr
an be 
omputed as a fun
tion of those two events: Cr = Comp(H;E).2Support values falling out of the normalization fun
tion domain interval will be mapped to the highestpossible support value.



3.2. ALGORITHM PARAMETERIZATION 37The Comp fun
tion 
an take many forms. the most dire
t one is the 
onditional proba-bility: Comp(H;E) = P (HjE)Another possibility is to 
ompute Mutual Information between the two events E and H[Chur
h & Hanks 90, Cover & Thomas 91℄.Comp(H;E) = log P (H \E)P (H)� P (E)or either the Asso
iation S
ore [Resnik 93, Ribas 94℄ whi
h 
ombines the previous twoComp(H;E) = P (HjE) � log P (H \E)P (H)� P (E)other possibilities are Relative Entropy [Cover & Thomas 91, Ribas 94℄Comp(H;E) = XX2fH;:Hg;Y 2fE;:EgP (X \ Y )� log P (X \ Y )P (X) � P (Y )or statisti
al 
orrelationComp(H;E) = P (H \E)� P (E)P (H)p(P (E)� P (E)2)(P (H)� P (H)2)Yet another possibility is using Maximum Entropy Estimate {whi
h was introdu
ed inse
tion 2.1.2 (see [Rosenfeld 94, Ristad 97℄ for details){ to 
ompute those 
ompatibility values.Although it has not been used in this resear
h, we plan to introdu
e it in the short run.3.2.4 Convergen
e and Stopping CriteriaRelaxation labelling is an iterative algorithm whi
h has been proven to 
onverge under 
ertain
onditions [Zu
ker et al. 78, Zu
ker et al. 81, Hummel & Zu
ker 83℄. These 
onditions oftenrequire simple models {e.g. 
onsisting only on binary 
onstraints whi
h must be symmetri
{whi
h are not likely to hold in 
omplex appli
ations su
h as those of NLP.In addition, relaxation algorithms are often stopped before 
onvergen
e, sin
e they eitherprodu
e better results at early iterations [Ri
hards et al. 81, Lloyd 83℄ or it is not ne
essaryto wait until 
onvergen
e to know what the result will be [Zu
ker et al. 81℄. Di�erent stopping
riteria 
an be found in the literature, although most of them have a strong ad-ho
 
avour[Eklundh & Rosenfeld 78, Peleg 79℄. [Harali
k 83℄ presents a 
onditional probability inter-pretation of relaxation labelling whi
h enables a theoreti
ally grounded stopping 
riterion,unfortunately, it is only appli
able in spe
i�
 
ases (binary 
onstraints only, with boundedweight sum for all 
onstraints a�e
ting the same variable).In our 
ase, many experiments seem to produ
e slightly better results {though not statis-ti
ally signi�
antly better{ in early iterations than at 
onvergen
e (see se
tion 4.1).



38 CHAPTER 3. APPLICATION OF RELAXATION LABELLING TO NLPIn order to identify the 
auses of this phenomenon and �nd a better stopping 
riterion,we took as a referen
e the aforementioned uses of relaxation that were stopped by di�erent
riteria than 
onvergen
e and tested several stopping 
riteria based on the amount of variationfrom one iteration to the next.The tested 
riteria were: average weight variation in one iteration step, maximum weightvariation in one iteration step, Eu
lidean distan
e and average Eu
lidean distan
e per word([Eklundh & Rosenfeld 78℄). Those measures tried to 
apture the distan
e between the pointsin weight spa
e obtained in two su

essive iterations.Additional tested 
riteria were the �rst derivatives of the above mentioned distan
e mea-sures. That is, the variation that ea
h one presented from one iteration to the next. Thosemeasures intended to 
apture the speed of variation that relaxation presents at di�erent evo-lution stages, in order to �nd out whether it kept any relationship with the optimal stoppingiteration.Unfortunately, none of them led to any signi�
ant result, that is, no relationship wasfound between the proposed measures and the optimal stopping iteration.Another hypothesis that 
ould explain the best performan
e at early iterations was thatthe noise 
ontained in the training and testing 
orpora 
aused the algorithm to mistag somewords and/or to 
ompute as errors 
orre
t taggings that were mistagged in the test 
orpora.To 
he
k to what extent this 
ould be true, we manually analyzed the errors intro-du
ed/
orre
ted by the algorithm between the optimal stopping iteration and 
onvergen
e.Results showed that most of them were due to noise in the model and in the test 
orpus andthat 
onvergen
e is, if not improving the a

ura
y, at least not de
reasing it.The third approa
h to �nding a suitable stopping 
riterion was related to the 
onvergen
espeed. As in the 
ase of gradient step, relaxation labelling 
an 
onverge faster or slower ifan appropriate step size is 
hosen and it is 
onveniently de
reased. In the 
ase of relaxationalgorithms, this e�e
t is a
hieved by modifying the normalization fa
tor of the support values.As des
ribed in se
tion 3.1.1, the support values are usually 
omputed as the sum ofseveral 
ompatibility values (Cr), thus, the support value Sij for a label is unbounded. It hasalso been des
ribed in se
tion 3.1.2 that the global support for a label must be bounded in[�1; 1℄ or in [0;+1℄. This means that on
e the global support for a label has been 
omputed,it must be s
aled to �t in the appropriate interval. If this normalization yields a large value,the step taken by the iteration will be large, while if normalization produ
es a relatively smallvalue, the step will be shorter.Our experiments show that 
hanging the normalization fa
tor for the support values hasthe e�e
t of 
hanging the number of ne
essary iterations to a
hieve 
onvergen
e. In addition,the tagging a

ura
y is also a�e
ted: There seems to be an optimal normalization fa
tor whi
hprodu
es the best a

ura
y at 
onvergen
e. For this optimal value, the di�eren
e betweenthe a

ura
y at 
onvergen
e and at the optimal stopping iteration is non-signi�
ant. Thisprovides us with a reasonable stopping 
riterion: we 
an wait for 
onvergen
e, provided weuse a good normalization fa
tor. To establish the most appropriate value, we test a range ofpossible value and 
hoose the value that produ
es highest a

ura
y on tagging a fresh part ofthe training 
orpus, 
alled tuning set.Although higher a

ura
y results seem to be obtained at early iterations with low normal-ization fa
tors, the di�eren
e is either small or non-signi�
ant. In addition, the diÆ
ulties tosele
t the right stopping iteration des
ribed above, point that the sele
ted stopping 
riterionis a reasonable one. Nevertheless, this issue will require further attention.



3.3. CONSTRAINT ACQUISITION 39More details and results of the experiments on the stopping 
riterion for the relaxationalgorithm 
an be found in se
tion 4.1.33.3 Constraint A
quisitionAlthough the relaxation labelling algorithm and its appli
ation to POS tagging des
ribed sofar maximize the 
onsisten
y of the tag assignation to ea
h word, the a

ura
y of the resultis obviously dependent on the quality of the used language model.To enable the use of the relaxation algorithm, the language model must be written inthe form of 
onstraints. The better the 
onstraint model des
ribes language, the better theobtained results will be.In this se
tion, we will des
ribe the di�erent te
hniques that were used to obtain the
onstraints ne
essary to feed the relaxation algorithm. The des
ribed te
hniques range fromthe manual writing of 
onstraints by a linguist to the use of ma
hine learning te
hniques toa
quire them, through statisti
al n-gram model a
quisition.The used 
onstraints 
over di�erent NLP phenomena. They were developed to performdi�erent NLP tasks, as des
ribed in 
hapter 4. For POS tagging, n-gram models, automati-
ally learned models as well as a few hand{written 
onstraints were used. For shallow parsing,we used n-gram models and a quite good linguist written model. Finally, for word sense dis-ambiguation POS tag n-grams were 
ombined with other kinds of knowledge ranging fromsimple 
o-o

urren
e statisti
s to ma
hine{learned sele
tional restri
tions (see se
tion 4.3.2for details).3.3.1 Manual DevelopmentThe most obvious way to get a language model is getting a linguist who, through introspe
tion,writes a set of 
onstraints whi
h are supposed to des
ribe the behaviour of language.This approa
h is the most s
ienti�
 one, sin
e it is based on the assumption that tounderstand, predi
t or simulate any phenomenon, one has to model it �rst in an unambiguousway.Unfortunately, while this is a
hievable in physi
al s
ien
es, it appears to be mu
h harderwhen dealing with 
ognitive s
ien
es or, as in our 
ase, with language. This diÆ
ulty to modellanguage is probably 
aused by the very large number of involved variables, or by the existen
eof many ex
eptional 
ases. In addition, language is a 
onstantly 
hanging phenomenon, inspa
e {in the form of diale
ts{ and in time {as new words appear, or old words are given newmeanings{.Nevertheless, e�orts have been done to model language. If not as a whole, at least somephenomena have been very a

urately modelled.The main advantage of manual modelling is that the resulting 
onstraints have linguisti
meaning, and thus 
an be revised and tuned to improve the model or to dete
t its weakpoints.The main drawba
k is that many years of human e�ort have to be employed to obtain amodel able to 
ope with more or less unrestri
ted language.The resear
h presented in this thesis was fo
used on automati
ally a
quired models. But,sin
e relaxation labelling a

epts any kind of 
onstraints, it 
an deal also with linguist written



40 CHAPTER 3. APPLICATION OF RELAXATION LABELLING TO NLPmodels {either on their own or 
ombined with other 
onstraint models{. To 
he
k whether thisability was useful and linguisti
 models were 
orre
tly applied and 
ombined, we introdu
edsmall manually{written 
onstraint models.The �rst NLP task where we applied relaxation labelling was POS tagging. Althoughn-gram models perform reasonably well3, we wanted to test the ability of the algorithm tointegrate other sour
es of knowledge.We used the following two kinds of manual 
onstraints for POS tagging. See se
tion 4.1for details and results. A sample of the a
quired 
onstraints is presented in appendix B.The �rst one was adapting previously existing 
ontext 
onstraints to our algorithm. Theadapted 
onstraints were those used by the tagger des
ribed in [Moreno-Torres 94℄. Thattagger is a probabilisti
 one where the user 
ould write 
ontext 
onstraints that are applieda posteriori. Those 
onstraints enabled the linguist to 
orre
t the most 
ommon errors madeby the probabilisti
 tagger, and thus improve the �nal a

ura
y. Those 
onstraints had beendeveloped for Spanish, and so they 
ould be used only in Spanish 
orpora.The se
ond sour
e of manual 
onstraints was developing ourselves a redu
ed model. Thepro
edure was the following: the most frequent errors made by a bigram HMM tagger weresele
ted as diÆ
ult 
ases and 
onstraints were written to 
over them.In both 
ases, a 
ompatibility value has to be assigned to the 
onstraints in order toenable relaxation labelling to use them. Hand assignation of those values seems a very weakpro
edure bound to subje
tive appre
iations and prone to errors. For this reason we appliedan automati
 pro
edure to estimate those 
ompatibilities.The hand written 
onstraints were mat
hed to the training 
orpus, and the o

urren
es ofthe a�e
ted word/tag and the 
ontext des
ribed by the 
onstraint were 
omputed. The jointo

urren
es of both events were also 
omputed. This enables us to estimate the probabilityof any of them, as well as their 
onditional probabilities, and thus, 
ompute any of the
ompatibility measures des
ribed in se
tion 3.2.3.The 
onstraint model used for the shallow parsing task was 
ompletely developed bya linguist. Anyway, it is not a large-
overage model, and its labour 
ost was only someman hours. The developing pro
edure is that of Constraint Grammars, by su

essive modelre�nements over a training 
orpus. Details 
an be found in [Voutilainen & Padr�o 97℄ as wellas in se
tion 4.3.1.For the 
ase of WSD, the ne
essary model would be mu
h larger than for the other tasks,sin
e the number of possible 
ombinations is mu
h higher. That made us rely mainly onautomati
 models. Nevertheless, a few sele
tional restri
tions were hand written for somehigh frequen
y verbs. Examples and results are presented in se
tion 4.3.2.3.3.2 Statisti
al A
quisitionThe alternative to manually written models is obtaining them automati
ally from existing
orpora. The methods most 
ommonly used to a
hieve this rely on a statisti
al basis. Thelanguage model is thus 
oded as a set of 
o-o

urren
e frequen
ies for di�erent kinds ofphenomena.This statisti
al a
quisition is usually found in the form of n-gram 
olle
tion {as des
ribedis se
tion 3.3.2.1{, but more sophisti
ated a
quisition te
hniques are also used, as for instan
ethe sele
tional restri
tions model des
ribed in se
tion 3.3.2.3.3As des
ribed in se
tion 2.1.2 
urrent n-gram based tagger present an a

ura
y of about 97%.
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ently introdu
ed methods are those adapted from ma
hine learning �eld. Al-though some of them were developed to work in symboli
 dis
rete problems, they 
an beextended to statisti
al environments, where learned knowledge is not bla
k or white, but mayhave any intermediate value. The use of 
onstraints a
quired in this way is des
ribed inse
tion 3.3.2.2.3.3.2.1 Basi
 (Binary/Ternary 
onstraints)The most straightforward way of a
quiring a statisti
al language model is 
omputing the 
o-o

urren
e frequen
ies of some sele
ted features. These frequen
ies are then used to estimateprobabilities and derive the model. This is known as Maximum Likelihood Estimate (MLE).The sele
ted features and kind of 
o-o

urren
es 
ounted depend on what the model willbe representing. For instan
e, to get a model for part-of-spee
h tagging, one may 
ounto

urren
es of tag bigrams or trigrams of 
onse
utive words. For word sense disambiguation,it is 
ommon to �nd models 
onsisting of o

urren
e 
ounts of word pairs inside a prede�nedwindow, regardless of its exa
t relative position.In our experiments we use several kinds of statisti
al information 
olle
ted from tagged
orpus: For POS tagging, we use tag bigrams and trigrams. For shallow parsing we usebigrams and trigrams of shallow synta
ti
 roles for 
onse
utive words. For word sense disam-biguation, the 
olle
ted statisti
s are 
o-o

urren
es of pairs of WordNet top synsets in thesame senten
e, 
o-o

urren
es of WordNet �le 
odes, and �nally, salient word ve
tors for ea
hWN �le 
ode, following the idea des
ribed in [Yarowsky 92℄.3.3.2.2 Advan
ed (De
ision Trees)The statisti
al information may be also a
quired in more sophisti
ated ways, not ne
essarilythrough mere o

urren
e 
ounting. We 
an use ma
hine learning te
hniques to a
quire thatknowledge, either in a pure symboli
 form, or adding statisti
al information.We a
quired a POS model 
onsisting of 
ontext 
onstraints more 
omplex than simplen-grams. The 
onstraints took into a

ount word forms, as well as 
ontext POS tags. Theused method is exposed below. Further details 
an be found in [M�arquez & Rodr��guez 95,M�arquez & Padr�o 97, M�arquez & Rodr��guez 97℄.SettingChoosing, from a set of possible tags, the proper synta
ti
 tag for a word in a parti
ular 
ontext
an be seen as a problem of 
lassi�
ation. De
ision trees, re
ently used in NLP basi
 taskssu
h as tagging and parsing [M
Carthy & Lehnert 95, Daelemans et al. 96a, Magerman 96℄,are suitable for performing this task.A de
ision tree is a n-ary bran
hing tree that represents a 
lassi�
ation rule for 
lassifyingthe obje
ts of a 
ertain domain into a set of mutually ex
lusive 
lasses. The domain obje
ts aredes
ribed as a set of attribute{value pairs, where ea
h attribute measures a relevant featureof an obje
t taking a (ideally small) set of dis
rete, mutually in
ompatible values.Ea
h non{terminal node of a de
ision tree represents a question on (usually) one attribute.For ea
h possible value of this attribute there is a bran
h to follow. Leaf nodes represent
on
rete 
lasses.Classify a new obje
t with a de
ision tree is simply following the 
onvenient path throughthe tree until a leaf is rea
hed.
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al de
ision trees only di�ers from 
ommon de
ision trees in that leaf nodes de�nea 
onditional probability distribution on the set of 
lasses.It is important to note that de
ision trees 
an be dire
tly translated to rules 
onsidering,for ea
h path from the root to a leaf, the 
onjun
tion of all questions involved in this path asa 
ondition, and the 
lass assigned to the leaf as the 
onsequen
e. Statisti
al de
ision treeswould generate rules in the same manner but assigning a 
ertain degree of probability to ea
hanswer.So the learning pro
ess of 
ontextual 
onstraints is performed by means of learning onestatisti
al de
ision tree for ea
h 
lass of POS ambiguity4 and 
onverting them to 
onstraints(rules) expressing 
ompatibility/in
ompatibility of 
on
rete tags in 
ertain 
ontexts.Learning AlgorithmThe algorithm we used for 
onstru
ting the statisti
al de
ision trees is a non{in
rementalsupervised learning{from{examples algorithm of the TDIDT (Top Down Indu
tion of De
i-sion Trees) family. It 
onstru
ts the trees in a top{down way, guided by the distributionalinformation of the examples, but not on the examples order [Quinlan 86℄. Brie
y, the algo-rithm works as a re
ursive pro
ess that departs from 
onsidering the whole set of examplesat the root level and 
onstru
ts the tree in a top{down way bran
hing at any non{terminalnode a

ording to a 
ertain sele
ted attribute. The di�erent values of this attribute indu
ea partition of the set of examples in the 
orresponding subsets, in whi
h the pro
ess is ap-plied re
ursively in order to generate the di�erent subtrees. The re
ursion ends, in a 
ertainnode, either when all (or almost all) the remaining examples belong to the same 
lass, orwhen the number of examples is too small. These nodes are the leafs of the tree and 
ontainthe 
onditional probability distribution, of its asso
iated subset of examples, on the possible
lasses.The heuristi
 fun
tion for sele
ting the most useful attribute at ea
h step is of a 
ru
ialimportan
e in order to obtain simple trees, sin
e no ba
ktra
king is performed. Attribute{sele
ting fun
tions 
ommomnly used belong either to the information{based [Quinlan 86,L�opez de M�antaras 91℄ family or to the statisti
ally{based [Breiman et al. 84, Mingers 89a℄family.Training SetFor ea
h 
lass of POS ambiguity the initial example set is built by sele
ting from the training
orpus all the o

urren
es of the words belonging to this ambiguity 
lass. More parti
ularly,the set of attributes that des
ribe ea
h example 
onsists of the part{of{spee
h tags of theneighbour words, and the information about the word itself (orthography and the proper tagin its 
ontext). The window 
onsidered in the experiments reported in se
tion 4.2 is 3 wordsto the left and 2 to the right. The following are two real examples from the training set forthe words that 
an be preposition and adverb at the same time (IN{RB 
on
i
t)5.VB DT NN as IN DT JJNN IN NN on
e RB VBN TOApproximately 90% of this set of examples is used for the 
onstru
tion of the tree. Theremaining 10% is used as fresh test 
orpus for the pruning pro
ess.4Classes of ambiguity are determined by the groups of possible tags for the words in the 
orpus, i.e, noun-adje
tive, noun-adje
tive-verb, preposition-adverb, et
.5See appendix A for a tagset des
ription.
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tion Fun
tionFor the experiments reported in se
tion 4.2 we used a attribute sele
tion fun
tion due to[L�opez de M�antaras 91℄ belonging to the information{based family. It de�nes a distan
e mea-sure between partitions and sele
ts for bran
hing the attribute that generates the partition
losest to the 
orre
t one a

ording to the training set.Bran
hing StrategyUsual TDIDT algorithms 
onsider a bran
h for ea
h value of the sele
ted attribute. Thisstrategy is not feasible when the number of values is big (or even in�nite). In our 
ase thegreatest number of values for an attribute is 45 |the tag set size| whi
h is 
onsiderablybig (this means that the bran
hing fa
tor 
ould be 45 at every level of the tree6). Somesystems perform a previous re
asting of the attributes in order to have only binary-valuedattributes and to deal with binary trees [Magerman 96℄. This 
an always be done but theresulting features lose their intuition and dire
t interpretation, and explode in number. Wehave 
hosen a mixed approa
h whi
h 
onsist of splitting for all values and afterwards joiningthe resulting subsets into groups for whi
h we have not enough statisti
al eviden
e of beingdi�erent distributions. This statisti
al eviden
e is tested with a �2 test at a 95% 
on�den
erate. In order to avoid zero probabilities smoothing is performed.Additionally, all the subsets that do not imply a redu
tion in the 
lassi�
ation error arejoined together in order to have a bigger set of examples to be treated in the following stepof the tree 
onstru
tion.Pruning the TreeDe
ision trees that 
orre
tly 
lassify all examples of the training set are not always the mostpredi
tive ones. This is due to the phenomenon known as over-�tting. It o

urs when thetraining set has a 
ertain amount of mis
lassi�ed examples, whi
h is obviously the 
ase of ourtraining 
orpus (see se
tion 4.2.1). If we for
e the learning algorithm to 
ompletely 
lassifythe examples then the resulting trees would �t also the noisy examples.The usual solutions to this problem are: 1) Prune the tree, either during the 
onstru
-tion pro
ess [Quinlan 93℄ or afterwards [Mingers 89b℄; 2) Smooth the 
onditional probabilitydistributions using fresh 
orpus7 [Magerman 96℄.Sin
e another important requirement of our problem is to have small trees we have imple-mented a post-pruning te
hnique. In a �rst step the tree is 
ompletely expanded and after-wards it is pruned following a minimal 
ost{
omplexity 
riterion [Breiman et al. 84℄. Roughlyspeaking this is a pro
ess that iteratively 
ut those subtrees produ
ing only marginal bene�tsin a

ura
y, obtaining smaller trees at ea
h step. The trees of this sequen
e are tested using a,
omparatively small, fresh part of the training set in order to de
ide whi
h is the one with thehighest degree of a

ura
y on new examples. Experimental tests [M�arquez & Rodr��guez 95℄have shown that the pruning pro
ess redu
es tree sizes at about 50% and improves theira

ura
y in a 2{5%.An ExampleFinally, we present a real example of the simple a
quired 
ontextual 
onstraints for thepreposition{adverb (IN{RB) 
on
i
t.6In real 
ases the bran
hing fa
tor is mu
h lower sin
e not all tags appear always in all positions of the
ontext.7Of 
ourse, this 
an be done only in the 
ase of statisti
al de
ision trees.
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Conditional
probability

distribution

Prior probability
distribution

. . .

"as" "As"others

. . .

others RB

1st right tag

P(IN)=0.013

IN others

. . .

2nd right tag

word form

P(RB)=0.987

P(RB)=0.19
P(IN)=0.81

�5:81 (IN) 2:366 (RB)(0 "as" "As") (0 "as" "As")(1 RB) (1 RB)(2 IN); (2 IN);Figure 3.1: Example of a de
ision tree bran
h with its equivalent 
onstraints.Figure 3.1 shows a sample tree bran
h a
quired by the algorithm and the 
onstraints intowhi
h it is translated. These 
onstraints express the 
ompatibility (either positive or negative)of the 
onstraint head {�rst line{ with the 
ontext expressed by the 
onditions following it.The syntax used here is that of [Karlsson et al. 95℄ Constraint Grammars. The 
ompatibilityvalue for ea
h 
onstraint is the mutual information between the head tag and the 
ontext[Cover & Thomas 91℄. It is dire
tly 
omputed from the probabilities in the tree. Some othersample 
onstraints a
quired by the algorithm are presented in appendix B.3.3.2.3 Semanti
 ConstraintsOur interest in methods for obtaining 
ontext 
onstraints is due to the need of a languagemodel whi
h enables relaxation labelling to perform disambiguation tasks.In previous se
tions we have seen several te
hniques to a
quire 
ontext 
onstraint, mainlyaiming to build a model oriented to part-of-spee
h tagging. In this se
tion we will addressthe issue of how to a
quire a model to perform word sense disambiguation.Modelling the semanti
 aspe
ts of language is usually harder than POS or syntax mod-elling, and the automati
 a
quisition of semanti
 
onstraints is a resear
h �eld with still manyopen questions. As noted in se
tion 2.1.3, the 
hosen sense granularity has a very large in
u-en
e on a WSD system. In our 
ase, it also a�e
ts greatly the needed 
onstraint model andits a
quisition, sin
e a very �ne grained sense distin
tion will require a mu
h more pre
isemodel, and thus a larger number of 
onstraints and a better a
quisition pro
edure than amore 
oarse sense 
lassi�
ation.The 
exibility of the relaxation algorithm used to perform the disambiguation will dimthe in
uen
e of the sense granularity. The multi{feature approa
h we are taking (see se
tions4.3.1 and 4.3.2) will enable us to use di�erent granularity levels.
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e a reading for a word may in
lude di�erent features, su
h as POS, lemma,sense, et
., we 
an in
lude, for instan
e, a feature 
onsisting of a �ne{grained sense identi�er(e.g. WN synset)8, another one 
onsisting of a 
oarse{grained 
lassi�
ation (e.g. WN top),and even a third one 
ontaining some subje
t information (e.g. WN �le 
ode).This will enable the 
onstraints to express relationships between the di�erent levels ofgranularity, a

ording to the needs of every spe
i�
 
ase. In addition, sin
e the relaxationlabelling algorithm will use all available 
onstraints, in the 
ase that they do not in
lude allne
essary knowledge to fully disambiguate the right �ne{grained sense, at least a sense withthe right 
oarse 
lass or subje
t will be sele
ted. See se
tion 4.3.2 for details.In this resear
h, several automati
 te
hniques for a
quiring a 
onstraint model for WSDhave been experimented. They are brie
y des
ribed below, from the simplest 
o-o

urren
e
olle
tion to the sophisti
ated sele
tional restri
tions a
quisition te
hnique developed andapplied by [Ribas 95℄.� The simplest methods for a
quiring semanti
 
onstraints are the use of 
o-o

urren
einformation (see se
tion 3.3.2.1). For instan
e, 
omputing the 
o-o

urren
e ratio ofpairs of verb and/or noun senses.In our 
ase, we used the top synsets in WordNet hierar
hy, regarded as 
lass identi�ers9.The tops 
o-o

urren
es should be 
omputed from a sense{tagged 
orpus, 
omputingea
h o

urren
e of a sense as an o

urren
e of its top. The same te
hnique was appliedusing WN �le 
odes, instead of top synsets, as 
lass identi�ers.� Another possible method to derive simple semanti
 
onstraints are 
olle
ting salientword lists for ea
h 
lass (either top synset or WN �le 
ode) in the style of [Yarowsky 92℄.This te
hnique 
an be used either on supervised or unsupervised 
orpora and 
onstitutesan easy pro
edure {although maybe not as pre
ise as one might want{ to build semanti
models.For ea
h word in the 
orpus, all the 
ontent words appearing in its near 
ontext are
olle
ted as belonging to the salient words list of the fo
us word sense {if the rightsense is known{, or to all the lists of all possible senses for the fo
us word if the 
orpusis unsupervised. Then, a threshold is established and only the most relevant 
ontextwords for ea
h sense are kept. When disambiguating a new o

urren
e of a word, the
hosen sense is that with highest mat
hing ratio between the sense salient words listand the 
urrent 
ontext.� Another interesting possibility for automati
ally a
quiring semanti
 
onstraints is using
on
eptual distan
e (e.g. over WordNet [Sussna 93℄) between pairs of noun senses. Itseems to be more reliable, sin
e the information is not drawn from a 
orpus, but froma hand{built taxonomy. In addition, no sense{tagged 
orpora is needed to a
quire themodel.The semanti
 distan
e approa
h is based on the assumption that 
on
eptually 
losesynsets will tend to appear in the same 
ontext. This assumption does not always hold,8As noted in se
tion 2.1.3, WordNet is a 
on
ept hierar
hy, where ea
h sense is represented by a set ofsynonym words (a synset). In addition, synsets are grouped in themati
 �les, ea
h one with its own �le 
ode.9That is, a verb sense and a noun sense will be 
onsidered to have the same 
o-o

urren
e ratio than theirrespe
tive tops.
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ussed in se
tion 4.3.2. Moreover, 
on
eptual distan
e over a taxonomy su
h asWordNet 
an only be 
omputed between senses belonging to the same sub-hierar
hy(nouns, verbs, adj, adv), whi
h limits the power of this method.Probably, none of the above kinds of 
onstraints would be des
ribed as a powerful andnatural way to express semanti
 relationships. In addition, experiments reported in se
tion4.3.2 subs
ribe the idea that they do not 
apture all ne
essary knowledge to a

urately dis-ambiguate word senses.One of the most natural way of expressing semanti
 
onstraints are the sele
tional restri
-tions that a phrase head imposes to its 
omplements and vi
e-versa, for instan
e, the nountable a

epts adje
tives referring to its shape (round, square, . . . ), 
olor (brown, dark, . . . ),size (big, tall, . . . ), et
., but it does not a

ept adje
tives su
h as intelligent, powerful, . . . .In the same way, verbs impose 
onstraints on their obje
ts, for instan
e, a subje
t for verbthink must be human {or at least animate{, the dire
t obje
t for verb eat must be food, et
.In our 
ase, sin
e this resear
h is mainly on 
onstraint appli
ation and not on 
onstrainta
quisition, we fo
used on sele
tional restri
tions imposed by a verb to its obje
ts. This
hoi
e was made in order to be able to use the sele
tional restri
tions automati
ally a
quiredby [Ribas 94, Ribas 95℄.Although the resear
h developed by [Ribas 95℄ was mainly fo
used on unsupervised learn-ing {due to the la
k of large available sense{tagged 
orpora{, for our purposes of applying a
onstraint model to performWSD, the supervised option seems to provide with more a

uraterestri
tions. Thus, although [Ribas 95℄ applied his te
hnique to both 
ases, we only will usethe 
onstraints he a
quired through supervised learning.The pro
edure used by [Ribas 95℄ to obtain sele
tional 
onstraints from 
orpora is outlinedbelow. To �nd out more about this te
hnique, either in its supervised or unsupervised version,see [Resnik 93, Ribas 95℄.Sele
tional Restri
tions A
quisition.The s
enario on whi
h the a
quisition te
hnique developed by [Ribas 95℄ should extra
t se-le
tional restri
tions is displayed in Figure 3.2, where, departing from the three examples ofuse of the verb pay and knowing the semanti
 
ategorizations of banks, 
ompany and 
ity asso
ial-group, the system should indu
e that the verb pay imposes a sele
tional restri
tion overits subje
t that 
onstrains the 
ontent word �lling it to be a member of the semanti
 typeso
ial-group. Therefore, the aim of the system is to extra
t, for ea
h word (being a head andhaving enough o

urren
es) in the 
orpus and for ea
h of its synta
ti
 
omplements, a listof the alternative sele
tional restri
tions that the head word is imposing on the 
omplementwords.Although sele
tional restri
tions have been used to express semanti
 
onstraints holding ondi�erent synta
ti
 and fun
tional 
on�gurations, the work in [Ribas 95℄ {whose results we areusing{ fo
used only on those holding between verbs and their 
omplements. The methodology
an be easily exported to other 
on�gurations. Moreover, 
onsidering the theoreti
al andpra
ti
al 
ontroversy on doing the argument/adjun
t distin
tion [Adams & M
Farland 91℄and given that the sour
e of 
o-o

urren
es used {the Penn Treebank [Mar
us et al. 93℄{is not reliably marked with su
h distin
tion, it was not taken into a

ount when a
quiringsele
tional restri
tions.
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� Previous semanti
 knowledge

<city,metropolis> <company-1>

<army-unit>

<depository-financial-institution,bank>

<municipality>

<bank>

<social-group>

<city>

<location>

<region,area>

<district,territory>

<administrative-district>

<gathering,assemblage>

<people>

<group>

<military-unit>

<unit>

<company-2>

<bussiness,concern>

<organization>

<enterprise>

<entity>

<slope,incline>

<geological-formation>

<natural-object>

<institution>

<financial-institution>

city company bank� Three examples of use of payFor nearly a de
ade, banks have paid high interest rates to small 
ustomers.The 
ompany still has to pay its debts to 
reditors.The 
ity has paid $ 95,142 to Mr. Dinkins in mat
hing funds although his 
ampaignre
ords are in
omplete.� The a
quired Sele
tional Restri
tion(pay, SUBJ, <so
ial-group>)Figure 3.2: Example of the a
quisition of Sele
tional Restri
tions.
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 Te
hniqueThe basi
 te
hnique used in [Ribas 95℄ to a
quire sele
tional restri
tions is a slight variationof the methodology �rst introdu
ed in [Resnik 92℄ and further developed in [Resnik 93℄.From the 
olle
tion of nouns that 
o-o

ur as parti
ular 
omplements of a given verb, thebasi
 method tries to generalize the appropriate semanti
 
lasses (sele
tional restri
tions) bysele
ting a level in a taxonomy (WordNet in our 
ase).The input to the pro
ess is a set of 
o-o

urren
e triples (verb, synta
ti
-relationship,noun)10 extra
ted from synta
ti
 analysis of the 
orpus. Restri
tions are only a
quired fornoun senses, that is, no knowledge about whi
h is the right verb sense a

ording to its obje
tnous is extra
ted. If the algorithm does not know the appropriate sense for ea
h noun inthe 
o-o

urren
e triples, it 
onsiders all the noun hyperonyms for all possible noun senses as
andidate 
lasses (unsupervised training). Otherwise, if the training 
orpora is sense{tagged,only the hypernonyms of the right sense are used as 
andidate 
lasses (supervised training).On
e the 
andidate 
lasses have been obtained for ea
h pair (verb,synta
ti
-relationship),only those 
lasses that generalize triples with a higher frequen
y than a given thresholdare further 
onsidered. Their asso
iation is evaluated by means of a statisti
al measure,Asso
iation S
ore (see se
tion 3.2.3), derived from the 
o-o

urren
e of verbs and 
lasses ofnouns.The statisti
al asso
iation is used by a sele
tion pro
ess to 
hoose the best 
lasses to
onvey the sele
tional restri
tions. The algorithm, for every pair (verb, synta
ti
-relationship),generalizes a set of sele
tional restri
tions, i.e. pairs (
lass, statisti
al-preferen
e). This isdone by sele
ting the 
andidate 
lass with highest asso
iation s
ore, and removing all itshypermonyms and hyponims from the set of 
andidate 
lasses. Repeating this pro
edureuntil no 
andidate 
lasses are left, the resulting sele
ted 
lasses for the verb and synta
ti
relationship are mutually disjoint, that is they are not related by hyperonymy, and are ageneralization of the 
lasses in the 
o-o

urren
e triples.An ExampleAs an example of the di�erent results produ
ed by the supervised and unsupervised meth-ods, the 
andidate 
lasses 
onsidered by ea
h kind of training for the situation presented in�gure 3.2 are shown in tables 3.1 and 3.2, respe
tively.from 
ity from 
ompany from bank<
ity,metropolis> <
ompany-2> <depository-�nan
ial-institution,bank><muni
ipality> <bussiness,
on
ern> <�nan
ial-institution><gathering,assemblage> <enterprise> <institution><so
ial-group> <organization> <organization><people> <so
ial-group> <so
ial-group><group> <people> <people><group> <group>Table 3.1: Candidate 
lasses for (pay, SUBJ) using supervised training.10verb is the verb lemma, noun is the noun lemma, and synta
ti
-relationship may be subje
t, dire
t obje
t,indire
t obje
t, or prepositional obje
t. In the last 
ase the relationship is labelled with the spe
i�
 preposition.
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ity<
ity> <
ity,metropolis><administrative-distri
t> <muni
ipality><distri
t,territory> <gathering,assemblage><region,area> <so
ial-group><lo
ation> <people><group>from 
ompany<
ompany-1> <
ompany-2><army-unit> <bussiness,
on
ern><military-unit> <enterprise><unit> <organization><organization> <so
ial-group><so
ial-group> <people><people> <group><group> from bank<depository-�nan
ial-institution,bank> <bank><�nan
ial-institution> <slope,in
line><institution> <geologi
al-formation><organization> <natural-obje
t><so
ial-group> <entity><people><group>Table 3.2: Candidate 
lasses for (pay, SUBJ) using unsupervised training.The usupervised a
quisition te
hnique would present the following behaviour: Assumingthat the <so
ial-group> sense has a higher Asso
iation S
ore than its relative (hyponymor hyperonym) senses, it would be sele
ted as the best 
andidate. Its relatives would thenbe eliminated from the 
andidate 
lasses set, and thus, the 
onstraint (pay, SUBJ, <so
ial-group>) would be extra
ted. Nevertheless {unless they had been removed by the threshold�ltering{ the <lo
ation> and <entity> 
lass families are still 
andidates, thus, the sense withhighest s
ore in ea
h family would be sele
ted. This would 
ause the �nal result to 
onsistof three sele
tional 
onstraints: the �rst one is the expe
ted solution, with a high asso
iations
ore, and the other two {with a presumably lower asso
iation s
ore{ are 
aused by the noiseintrodu
ed by the unsupervised training and a too low threshold.(pay, SUBJ, <so
ial-group>)(pay, SUBJ, <entity>)(pay, SUBJ, <lo
ation>)In supervised training, the pro
ess would be the same, but sin
e the <lo
ation> and<entity> 
lass families are not in
luded in the 
andidate 
lasses set, the 
orresponding re-stri
tions would not be extra
ted. Thus, the only a
quired restri
tion would be:(pay, SUBJ, <so
ial-group>)
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Chapter 4Experiments and ResultsIn this 
hapter we will des
ribe the experiments performed to test the utility of relaxationlabelling for NLP purposes. The reported experiments 
an be 
lassi�ed on three 
lasses:First, a set of tests {using POS tagging as a ben
hmark{ that were performed in orderto establish whi
h is the most appropriate parameterization for the relaxation algorithm inour 
ase. Se
ond, tests of the appli
ation of relaxation labelling to POS-tagging aiming toestablish its ability to deal with di�erent kinds of information, and to establish whether it
an outperform 
urrent POS taggers. Third, experiments on applying relaxation labelling toNLP tasks other than POS tagging, namely, word sense disambiguation and shallow parsing.The later experiments were also performed to test the ability of the algorithm to deal withmulti-feature models as well as its ability to integrate multi-sour
e knowledge.In se
tion 4.1 the experiments performed to establish the best parameterization are de-s
ribed. Se
tion 4.2 des
ribes the set of experiments on applying the algorithm to POS-tagging, and se
tion 4.3 exposes how relaxation labelling was applied to shallow parsing andword sense disambiguation and the results obtained.4.1 Parameter sele
tion experimentsThe �rst set of experiments were performed on the task of POS tagging be
ause it is one thesimplest and most straightforward NLP tasks. In addition, it is almost straightforward tomodel it to be solved by the relaxation labelling algorithm.The performed experiments aimed to �nd the most appropriate parameters for relaxationlabelling when applied to this kind of tasks, in order to establish a starting point for furtheruse of the algorithm at more 
omplex NLP tasks.The experiments 
onsisted of tagging a 
orpus using all logi
al 
ombinations of parametersfor the algorithm. The algorithm parameters are those des
ribed in se
tion 3.2, that is:support fun
tion, updating fun
tion and 
ompatibility values.Di�erent kinds of 
onstraints (bigrams, trigrams, hand-written, and all 
ombinations ofthem) were used, as a �rst test of the algorithm 
exibility respe
t to the used language model.The di�erent 
onstraints where used separately as well as 
ombined.We also tested di�erent normalization fun
tions for support values, and made some trialslooking for a support fun
tion spe
i�
ally designed for the 
ase of POS-tagging as well asapplying the di�erent kinds of 
onstraints in a ba
k{o� hierar
hy.51



52 CHAPTER 4. EXPERIMENTS AND RESULTSThe experiments were repeated on the following three 
orpora. Ea
h one of them hadsome feature that made its use interesting.Corpus SN (Spanish Novel) Train set: 15 Kw. Test set: 2 Kw. Tag set1 size: 68.This 
orpus was 
hosen to test the algorithm in a language distin
t than English, andbe
ause previous work [Moreno-Torres 94℄ on it provides us with a good ben
hmark andwith linguist written 
onstraints.Corpus Sus (Susanne) Train set: 141 Kw, Test set: 6 Kw. Tag set size: 150.The interest of this 
orpus is to test the algorithm with a large tag set.Corpus WSJ (Wall Street Journal) Train set: 1055 Kw. Test set: 6 Kw. Tag set size: 48.The interest of this 
orpus is obviously its size, whi
h gives a good statisti
al eviden
efor automati
 
onstraints a
quisition.The performed experiments with their results and 
on
lusions are published in [Padr�o 95,Padr�o 96a, Padr�o 96b℄.4.1.1 Baseline resultsIn order to have a 
omparison referen
e we will evaluate the performan
e of two taggers:A blind most-likely-tag tagger and a bigram HMM tagger [Elworthy 93℄ performing Viterbialgorithm. The training and test 
orpora will be the same for all taggers.Results obtained by the baseline taggers are found in table 4.1 (�gures show pre
isionper
entage over ambiguous words). SN Sus WSJMost-likely 69:62% 86:01% 88:52%HMM 94:62% 93:20% 93:63%Table 4.1: Results a
hieved by 
onventional taggers.The Most-likely tagger produ
es poorer results on the SN 
orpus than on the othersbe
ause of the redu
ed size of this 
orpus, whi
h does not provide enough eviden
e for amost-likely model.4.1.2 Relaxation labelling resultsIn this se
tion we will expose the results a
hieved by the relaxation labelling algorithm onthe three test 
orpus.Although results for ea
h 
ombination of parameters were obtained, the tables presentedhere 
ontain only the best results produ
ed by any parameter 
ombination. As noted below,the best results happened to be obtained in most 
ases by the same parameterizations.For ea
h parameter 
ombination, the algorithm was tested with all possible 
ombinationsof 
onstraints. The sets of 
onstraints used were bigram 
onstraints (B), trigram 
onstraints(T) and hand-written 
onstraints (H).1A listing of tags and des
riptions 
an be found in appendix A.



4.1. PARAMETER SELECTION EXPERIMENTS 53The sets of hand-written 
onstraints were built a

ording to the pro
edure des
ribed inse
tion 3.3.1, whi
h 
an be summarized as follows:For WSJ and Sus 
orpora, the test 
orpus was tagged using the baseline HMM tagger.The most frequent errors made by the HMM tagger were analyzed, and 
onstraints to 
overthose 
ases were hand-written. That produ
ed a set of 12 
onstraints for WSJ 
orpus and aset of 66 
onstraints for Sus.For SN 
orpus, we adapted some 50 
ontext 
onstraints proposed by [Moreno-Torres 94℄,who used them to 
orre
t the most 
ommon errors of his probabilisti
 tagger.The 
ompatibility value for these 
onstraints were 
omputed from their o

urren
es inthe 
orpus, that is, the number of o

urren
es of the a�e
ted word or tag and the number ofo

urren
es of the 
ontext des
ribed by the 
onstraint is 
olle
ted from the training 
orpus.This provides the ne
essary information to 
ompute the 
ompatibility value for the 
onstraintin any of the forms des
ribed in se
tion 3.2.3.Best results {in pre
ision over ambiguous words{ obtained by relaxation using every 
om-bination of 
onstraint kinds are shown in table 4.2.SN Sus WSJB 95:77% 91:65% 89:34%BH 96:54% 92:50% 89:24%T 90:00% 88:60% 90:87%BT 93:85% 89:33% 90:81%TH 92:31% 89:02% 90:78%BTH 95:00% 89:83% 90:94%Table 4.2: Best relaxation results using every 
ombination of 
onstraint kinds.The results presented in table 4.2 are the best results obtained for any parameter 
ombi-nation. Nevertheless, it is interesting to state that all of them were obtained using supportfun
tion des
ribed in equation (3.1) and most of them with the updating fun
tion in equation(3.4) and using mutual information as 
ompatibility values.This suggests that this parameter 
ombination is the most appropriate for this kind oftask. Further dis
ussion on this issue 
an be found in se
tion 5.1.Some general issues we 
an draw from this results are:� In the same 
onditions than HMM taggers -i.e. using only bigram information{ relax-ation only performs better than HMM for the small 
orpus SN, and the bigger the
orpus is, the worse results relaxation obtains.� Using trigrams is only helpful in WSJ. This is be
ause the training 
orpus for WSJ ismu
h bigger than in the other 
ases, and so the trigram model obtained is good, whilefor the other 
orpora, the training set seems to be too small to provide a good trigraminformation.� We 
an observe that there is a general tenden
y to \the more information, the betterresults", that is, when using BTH we get better results that with BT, whi
h is in turnbetter than T alone.
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orpora results improve when adding hand-written 
onstraints, ex
ept in WSJ.This is be
ause the 
onstraints used in this 
ase are few (about 12) and only 
over afew spe
i�
 error 
ases (mainly the distin
tion past/parti
iple following verbs to haveor to be).4.1.3 Stopping before 
onvergen
eAll results presented in se
tion 4.1.2 were obtained stopping the relaxation algorithm when itrea
hes 
onvergen
e (no new signi�
ant 
hanges are produ
ed from one iteration to the next),but relaxation labelling algorithms do not give ne
essarily their best results at 
onvergen
e2[Eklundh & Rosenfeld 78, Ri
hards et al. 81, Lloyd 83℄, or not always one needs to a
hieve
onvergen
e to know what the result will be [Zu
ker et al. 81℄. So they are often stoppedafter a few iterations. A
tually, what we are doing is 
hanging our 
onvergen
e 
riterion toone more heuristi
 than \stop when there are no more 
hanges".SN Sus WSJ96:92% (12) 93:78% (6) 94:17% (6)Table 4.3: Best results stopping before 
onvergen
e.The results presented in table 4.3 are the best overall results that we would obtain if wehad a 
riterion whi
h stopped the iteration pro
ess when the result obtained was an optimum.The number in parenthesis is the iteration at whi
h the algorithm should be stopped. Theseresults are 
learly better than those obtained at relaxation 
onvergen
e, and also outperformthe established baseline taggers.To �nd out whi
h one was the right moment to stop iteration, three lines of resear
h wereused (see 3.2.4):First, several 
onvergen
e 
riteria were tested, all of them based on the variation produ
edfrom one iteration to the next, to 
he
k whether there was any relationship between thosemeasures and the optimal iteration. The tested 
riteria were: global Eu
lidean distan
e(taking ea
h weight of ea
h tag as a dimension of a n-dimensional spa
e), average Eu
lideandistan
e per word ([Eklundh & Rosenfeld 78℄), average tag support variation, maximum tagsupport variation, and their respe
tive �rst derivatives (that is, the variation on the variationfrom one iteration to the next).None of these 
riteria seemed to keep any relationship with the optimal stopping iteration,that is, none of them had any parti
ular behaviour when the algorithm went through theiteration where the optimal result was obtained.Se
ond, hand analysis of the errors made or solved by the algorithm when approa
hing
onvergen
e was performed. That implied tagging a test 
orpus of 50 Kw both waitingfor 
onvergen
e and stopping the algorithm at the iteration whi
h yielded the best result.Then the 72 errors introdu
ed by 
onvergen
e and the 52 errors that it 
orre
ted were handanalyzed.2This is due to two main reasons: (1)The optimum of the support fun
tion does not 
orrespond exa
tly tothe best solution for the problem, that is, the 
hosen fun
tion is only an approximation of the desired one.And (2) performing too mu
h iterations 
an produ
e a more probable solution, whi
h will not ne
essarily bethe 
orre
t one.



4.1. PARAMETER SELECTION EXPERIMENTS 55Those analysis showed that the errors introdu
ed by 
onvergen
e were mainly due to noisein the training or test 
orpora, while the 
orre
ted ones were mostly real 
orre
tions. Seese
tion 4.1.6 for further dis
ussion.Third, the algorithm 
onvergen
e is 
losely related to the normalization fa
tor for supportvalues3 sin
e modifying the normalization interval has an e�e
t similar to 
hanging the stepsize in a gradient algorithm. So, experiments were performed in order to �nd an obje
tivemanner to establish the most suitable normalization fa
tor, and to establish its relation withthe stopping 
riterion.The results of this line showed that 
hanging the normalization fa
tor 
hanges the iterationat whi
h the optimal result is obtained, as well as the optimal result itself, and that thehighest result is obtained when the normalization fa
tor sele
ts as the stopping iteration thatof 
onvergen
e.As an example, table 4.4 shows the a

ura
y obtained at 
onvergen
e and at the optimalstopping iteration for di�erent normalization fa
tor values.Normalization 
onvergen
e optimal iterationfa
tor a

ura
y (it.#) { a

ura
y5 86:84 (2) { 93:6210 89:63 (6) { 94:2615 90:79 (9) { 94:3520 91:57 (12) { 94:3325 92:34 (13) { 94:3430 92:83 (16) { 94:3535 93:10 (19) { 94:3440 93:41 (23) { 94:3545 93:63 (24) { 94:3450 93:75 (27) { 94:2855 93:89 (31) { 94:2460 93:93 (34) { 94:1965 93:94 (37) { 94:1270 93:99 (39) { 94:0675 93:97 (42) { 94:0180 93:99 (62) { 94:0085 93:93 (64) { 93:9490 93:87 (50) { 93:8895 93:77 (85) { 93:78100 93:66 (89) { 93:66Table 4.4: Results at 
onvergen
e and at the optimal stopping iteration for di�erent normal-ization fa
tor values.3As des
ribed in se
tion 3.1.2 and dis
ussed in se
tion 3.2.4, when using equation 3.4 support values mustbe in [�1; 1℄. Sin
e mutual information is not ne
essarily in this range, normalization must be performed.
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hing a more spe
i�
 support fun
tionThe support fun
tions des
ribed in se
tion 3.1.1 are traditionally used in relaxation algo-rithms. It seems better for our purpose to 
hoose an additive one, sin
e the multipli
ativefun
tions might yield zero or tiny values when -as in our 
ase- for a 
ertain variable or tag no
onstraints are available for a given subset of variables.Sin
e those are general{purpose fun
tions, we attempted to �nd a support fun
tion morespe
i�
 for our problem, inspired on the sequen
e probability maximization performed byHMMs.Sin
e HMMs �nd the maximum sequen
e probability and relaxation is a maximizationalgorithm, we 
an try to make relaxation maximize the sequen
e probability and we shouldget similar results, whi
h 
ould be improved afterwards by adding new information to themodel. As relaxation labelling performs a ve
tor optimization {as des
ribed in se
tion 3.1{mainly dependent on the support fun
tion, to make the algorithm maximize the sequen
eprobability, we de�ned the support fun
tion as the sequen
e probability, 
omputed in thesame way than in a 
lassi
al probabilisti
 tagger.Being:tk the tag for variable vk with highest weight value at the 
urrent time step.�(v1; t1) the probability for the sequen
e to start in tag t1.P (v; t) the lexi
al probability for the word represented by v to have tag t.T (t1; t2) the probability that tag t2 follows tag t1, (bigram probability).We de�ne:Bij = �(v1; t1)� (i�2Yk=1P (vk; tk)� T (tk; tk+1))� P (vi�1; ti�1) �T (ti�1; tij)� P (vi; tij)� T (tij; ti+1)� ( N�1Yk=i+1P (vk; tk)� T (tk; tk+1))� P (vN ; tN )Sin
e it in
orporates only bigram information (the T (tk; tk+1) transitions), using Bij asas support fun
tion would have enabled us to use only binary 
onstraints, so we in
luded inour new support fun
tion the 
ontribution of higher order 
onstraints.The 
ontribution of trigram 
onstraints,Tij = Xr2R3ij Inf(r; i; j) where R3ij is the set of all trigram
onstraints on tag j for word i.And the 
ontribution of higher{order 
onstraintsCij = Xr2RHij Inf(r; i; j)where RHij is the set of all hand-written
onstraints on tag j for word i.
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hose to 
ombine the support provided by bigrams (Bij) with the support provided bytrigrams (Tij) and hand-written 
onstraints (Cij) in a multipli
ative form be
ause sin
e Bijis 
omputed as the probability of the whole sequen
e, it is many magnitude orders smallerthan Tij and Cij, whi
h are 
omputed lo
ally; thus, adding them would have the e�e
t oflosing the information provided by Bij , sin
e it would be too small to a�e
t the other �gures.But just multiplying them yields another problem: we do not have trigram or handwritten 
onstraints for ea
h word or tag. Then a tag with no su
h an information will haveTij = Cij = 0 (or, if we perform some kind of smoothing, a tiny value), and multiplyingthis value by Bij would make the support value drop. That is, a tag with trigram or hand-written 
onstraints information would have less support than another one with only bigraminformation, even when the trigram information was positive. Sin
e we want trigrams andother 
onstraints to in
rease the support when positive and to de
rease it when negative, weadd one to the value before multiplying it, so when no trigrams are used, support remainsun
hanged, but if extra information is available, it in
reases/de
reases the support.Thus, we obtain the new support fun
tion:Sij = Bij � (1 + Tij)� (1 + Cij) (4.1)Results obtained with this spe
i�
 support fun
tion are summarized in table 4.5.SN Sus WSJ94:23% (1-3) 92:31% (6) 93:60%(1)Table 4.5: Best results using a spe
i�
 support fun
tion.Using this new support fun
tion we obtain results slightly below those of the HMM tagger.Although our support fun
tion is based on the sequen
e probability, whi
h is what HMMtaggers maximize, we get worse results. There are two main reasons for that. The �rst oneis that we are not optimizing exa
tly the sequen
e probability, but a support fun
tion basedon it. The se
ond reason is that relaxation is not an algorithm that �nds global optima and
an be trapped in lo
al maxima.4.1.5 Combining information in a ba
k-o� hierar
hyWe also experimented 
ombining bigram and trigram information in a ba
k-o� me
hanism:Use trigrams if available and bigrams when not.Results obtained with that te
hnique are shown in table 4.6SN Sus WSJ92:31% (3-4) 93:66% (4) 94:29% (4)Table 4.6: Best results using a ba
k-o� te
hnique.The results here point to the same 
on
lusions than the use of trigrams: if we have agood trigram model (as in WSJ) then the ba
k-o� te
hnique is useful. In this 
ase, theresult obtained with the ba
k{o� model was better than the results for any other 
onstraint
ombination in this 
orpus. If the trigram model is not so good, results are not better thanthe obtained with bigrams alone.
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on
lusionsThe main 
on
lusions of those experiments were the following:� The most suitable support fun
tion is that des
ribed in equation 3.1. This is an ex-pe
table result, sin
e this is the additive formula for 
omputing support. Sin
e zero
ompatibility 
onstraints will be usual in our appli
ation {there may be many phe-nomena not des
ribed by our 
onstraints, or that did not o

ur in the training set{ amultipli
ative formula would have the e�e
t of making the support drop to zero when,for instan
e, a non-observed bigram was found. This makes the additive formula mu
ha more logi
al 
hoi
e, and this intuition is 
on�rmed by the experiments.� The alternative support fun
tion proposed in se
tion 4.1.4 does not produ
e betterresults than the others. Although trying to simulate a bigram HMM with relaxationalgorithms 
ould be an appealing idea {sin
e then we would have a generalization of theMarkovian taggers whi
h 
ould be improved easily adding higher order information{ Thealready existing support fun
tions seem to 
ombine the di�erent kinds of 
onstraints ina more eÆ
ient way. Nevertheless, we tried only one proposal, and this is still an openissue.� The better results are obtained when modelling 
ompatibility as mutual information.This is probably 
aused by the fa
t that mutual information 
an be negative or positive,thus, it enables modelling in
ompatibility as well as 
ompatibility.� The updating fun
tion whi
h experiments pointed out as the best 
hoi
e was the zero-
entered fun
tion, des
ribed in equation 3.4, but this is a se
ondary e�e
t of 
hoosingmutual information as 
ompatibility values, whi
h requires an updating fun
tion ableto deal with negative support values.� None of the tested stopping 
riteria performed signi�
antly better than the others, northan 
onvergen
e.� The di�eren
e of 20 errors (52 vs. 72, as des
ribed in se
tion 4.1.3) between the bestiteration and the 
onvergen
e is not signi�
ant in a 50 Kw 
orpus.� The hand analysis of the errors showed that most of the introdu
ed errors were dueeither to noise in the language model {
aused by noise in the training 
orpus{ or tonoise in the test 
orpus itself, while most of the 
orre
ted tags were real 
orre
tions.That 
hanged the balan
e to a di�eren
e of some 20 errors 
orre
ted by 
onvergen
ethat is also non-signi�
ant.� The experiments on �nding the most suitable normalization fa
tor for support valuesshowed that when the normalization fa
tor is 
hosen in su
h a way that the 
onvergen
estopping 
riterion produ
es its best results, the di�eren
e between 
onvergen
e and thebest iteration is either zero or non-signi�
ant. That is, the right normalization fa
tormakes the optimal stopping iteration be that of 
onvergen
e.� The most suitable normalization fa
tor seems to be dire
tly proportional to the averagesupport re
eived by a word in the 
orpus. Although it has still to be 
he
ked whetherthis proportionality depends on other fa
tors su
h as the used 
orpus, tag set, the
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on, et
. The pro
edure 
urrently used to establish this fa
toris the use of a part of the training 
orpus as a tuning set, and 
hoose as a normalizationfa
tor the value whi
h produ
es better results on the tuning set.4.2 Experiments on Part-of-Spee
h TaggingBeing the part-of-spee
h tagging task a basi
 one in natural language pro
essing, it has beenaddressed for long and from a range of approa
hes, from the early linguisti
{knowledge basedwork in [Greene & Rubin 71℄, to many di�erent statisti
al approa
hes [Garside et al. 87,Chur
h 88, Cutting et al. 92℄. Great improvements have been done from the seventies, butalmost all systems still have about a 3% error rate. The best 
urrently performing systemis that of [Karlsson et al. 95, Voutilainen 95℄, whi
h a
hieves over a 99% re
all, although itdoes not fully disambiguate all words.Comparison between systems is diÆ
ult, sin
e most of them use di�erent test 
orpora anddi�erent tagsets. Choosing an appropriate tagset is a 
ru
ial issue: if the tagset is too 
oarse,it would provide an ex
essively poor information. If the tagset is too �ne{grained, the taggerpre
ision will be mu
h lower, be
ause the model will be worse estimated (sin
e mu
h moretraining data are needed to estimate a �ner{grained model), and be
ause some ambiguities
an not be solved on synta
ti
 or 
ontext information only.In order to minimize the need for tagged data, several resear
hers as [Cutting et al. 92,Elworthy 94a, Bris
oe et al. 94, S�an
hez & Nieto 95℄, use an initial model {either hand buildor estimated from a small tagged 
orpus{, whi
h is further re�ned using non-tagged datawith the Baum-Wel
h algorithm. [Bris
oe et al. 94℄ applied this te
hnique to tag di�erentlanguages and tagsets, and 
on
lude that a model a
quired from relatively small tagged 
orpus
an be improved up to a reasonably good model through re-estimation. [Elworthy 94a℄ studiesin whi
h 
ases is worth using this te
hnique, and how good will be the obtained modelsdepending on the re-estimation starting point. He 
on
ludes that although it is possible toobtain a fairly good model through re-estimation, the use of as mu
h tagged data as possibleis the best poli
y to obtain a

urate n-gram models.In the 
ase of relaxation labelling the importan
e of the tagset size is relative, sin
e the
onstraints are not required to be pure n-grams. They 
an be written in a 
oarser level thanthose of tags. For instan
e, if tags in
lude information about 
ategory, number and gender, theused 
onstraints may take into a

ount only 
ategory, or a �ner grained distin
tions dependingon the 
ase. With respe
t to model re-estimation, relaxation labelling 
an obviously use re-estimated models, but this is a point that loses relevan
e as more and more tagged 
orporabe
ome available. Moreover, the interest of an algorithm su
h as relaxation labelling is theability to use 
omplex 
onstraint models, so there is no point in using it with simple modelsthat are more eÆ
iently applied by Markovian taggers.The experiments performed on POS tagging des
ribed in this se
tion were used {on
e themost appropriate algorithm parameterization had been sele
ted{ to 
he
k that the POS tag-ging task was a

urately performed by our system, and that it properly 
ombines 
onstraintsfrom multiple sour
es.The experiments 
onsisted of tagging the same 
orpus with di�erent language models: abigram model, a trigram model, an automati
ally a
quired de
ision-tree model, and a smallset of hand-written 
onstraints. These di�erent models were 
ombined to 
he
k whether their
ollaboration improved the separately obtained results.
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onstraint a
quisition pro
edure has been exposed in se
tion 3.3.2.2. For furtherinformation on this topi
 see [M�arquez & Padr�o 97, M�arquez & Rodr��guez 97℄.4.2.1 Corpus des
riptionWe used the Wall Street Journal 
orpus to train and test the system. We divided it in threeparts: 1; 100 Kw were used as a training set, 20 Kw as a model{tuning set, and 50 Kw as atest set.The tag set size is 48 tags4. 36:4% of the words in the 
orpus are ambiguous, and theambiguity ratio is 2:45 tags/word over the ambiguous words, 1:52 overall.We used a lexi
on derived from training 
orpora, that 
ontains all possible tags for aword, as well as their lexi
al probabilities. For the words in test 
orpora not appearing inthe train set, we stored all possible tags, but no lexi
al probability (i.e. we assume uniformdistribution)5.The noise in the lexi
on was �ltered by manually 
he
king the lexi
on entries for the 200most frequent words in the 
orpus6 to eliminate the tags due to errors in the training set. Forinstan
e the original lexi
on entry (numbers indi
ate frequen
ies in the training 
orpus) forthe very 
ommon word the wasthe: CD 1, DT 47715, JJ 7, NN 1, NNP 6, VBP 1.sin
e it appears in the 
orpus with the six di�erent tags: CD (
ardinal), DT (determiner),JJ (adje
tive), NN (noun), NNP (proper-noun) and VBP (verb:personal-form). It is obviousthat the only 
orre
t reading for the is determiner.The training set was used to estimate bi/trigram statisti
s and to perform the 
onstraintlearning.The model{tuning set was used to tune the algorithm parameterizations, and to write thelinguisti
 part of the model.The resulting models were tested in the fresh test set.4.2.2 Language modelWe will use a hybrid language model 
onsisting of an automati
ally a
quired part and alinguist{written part.The automati
ally a
quired part is divided in two kinds of information:On the one hand, we have bigrams and trigrams 
olle
ted from the annotated training
orpus: we obtained 1404 bigram restri
tions and 17387 trigram restri
tions from the training
orpus.On the other hand, we have 
ontext 
onstraints learned from the same training 
orpususing statisti
al de
ision trees a
quired for ea
h representative ambiguity 
lass.The whole WSJ 
orpus 
ontains 241 di�erent 
lasses of ambiguity. The 40 most represen-tative 
lasses7 were sele
ted for a
quiring the 
orresponding de
ision trees. That produ
ed4See appendix A for a detailed listing.5That is, we assumed a morphologi
al analyzer that provides all possible tags for unknown words.6The 200 most frequent words in the 
orpus 
over over half of it.7In terms of number of examples.



4.2. EXPERIMENTS ON PART-OF-SPEECH TAGGING 6140 trees totaling up to 2995 leaf nodes, and 
overing 83.95% of the ambiguous words. Giventhat ea
h tree bran
h produ
es as many 
onstraints as tags its leaf involves, these trees weretranslated into 8473 
ontext 
onstraints.The linguisti
 part is very small {sin
e there were no available resour
es to develop itfurther{ and 
overs only very few 
ases, but it is in
luded to illustrate the 
exibility ofthe algorithm. It was written as follows: the model{tuning set was tagged using a bigrammodel. Then, the most 
ommon errors made by the bigram tagger were sele
ted, and some20 
onstraints were manually written to 
over those 
ases.A sample rule of the linguisti
 part is the following:10.0 (VBN)(*-1 VAUX BARRIER (VBN) OR (IN) OR (<,>) OR(<:>) OR (JJ) OR (JJS) OR (JJR));This rule states that a tag past parti
iple (VBN) is very 
ompatible (10.0) with a left
ontext 
onsisting of a VAUX (previously de�ned ma
ro whi
h in
ludes all forms of \have"and \be") provided that all the words in between do not have any of the tags in the setfVBN IN <,> <:> JJ JJS JJRg. That is, this rule raises the support for the tag pastparti
iple when there is an auxiliary verb to the left but only if there is not another 
andidateto be a past parti
iple or an adje
tive in-between. The tags fIN <,> <:>g prevent the rulefrom being applied when the auxiliary verb and the parti
iple are in two di�erent phrases (a
omma, a 
olon or a preposition are 
onsidered to mark the beginning of another phrase).The 
onstraint language used in this example is the Constraint Grammar formalism[Karlsson et al. 95℄, with the additional feature of an unrestri
ted numeri
al weight for ea
h
onstraint, instead of only two possible values (SELECT/REMOVE).4.2.3 Experiment des
ription and resultsOn
e the di�erent language models had been obtained, the tagger was tested on the 50 Kwtest set using all the possible 
ombinations of the models.As a detailed example of the model behaviour, the e�e
t of the a
quired rules on thenumber of errors for some of the most 
ommon 
ases is shown in table 4.78.In the tables presented in this se
tion, C stands for the a
quired 
ontext 
onstraints, Bfor the 1404{bigram model, T for the 17387{trigram model, and H for a small set of 20 hand-written 
onstraints. In addition, ML indi
ates a baseline model 
ontaining no 
onstraints(this will result in a most-likely tagger) and HMM stands for a hidden Markov model bigramtagger [Elworthy 93℄.Figures in table 4.7 show that in all 
ases the extension of a statisti
al model with thema
hine{learned 
onstraints led to a redu
tion in the number of errors.It is remarkable that when using C alone, the number of errors for these 
ases is lowerthan with any bigram and/or trigram model, that is, the a
quired model performs betterthan the others estimated from the same training 
orpus.8XX/YY stands for an error 
onsisting of a word tagged YY when it should have been XX. The meaningof the involved tags 
an be found in appendix A.



62 CHAPTER 4. EXPERIMENTS AND RESULTSML C B BC T TC BT BTCJJ/NN+NN/JJ 73+137 70+94 73+112 69+102 57+103 61+95 67+101 62+93VBD/VBN+VBN/VBD 176+190 71+66 88+69 63+56 56+57 55+57 65+60 59+61IN/RB+RB/IN 31+132 40+69 66+107 43+17 77+68 47+67 65+98 46+83VB/VBP+VBP/VB 128+147 30+26 49+43 32+27 31+32 32+18 28+32 28+32NN/NNP+NNP/NN 70+11 44+12 72+17 45+16 69+27 50+18 71+20 62+15NNP/NNPS+NNPS/NNP 45+14 37+19 45+13 46+15 54+12 51+12 53+14 51+14\that" 187 53 66 45 60 40 57 45Total 1341 631 820 630 703 603 731 651Table 4.7: Number of some 
ommon errors made by ea
h model.The global results on the test 
orpus obtained by the baseline taggers 
an be found in table4.8 and the results obtained using all the learned 
onstraints together with the bi/trigrammodels in table 4.9. ambiguous overallML 85:31% 94:66%HMM 91:75% 97:00%Table 4.8: Results of the baseline taggers.ambiguous overallB 91:35% 96:86%T 91:82% 97:03%BT 91:92% 97:06%C 91:96% 97:08%BC 92:72% 97:36%TC 92:82% 97:39%BTC 92:55% 97:29%Table 4.9: Results of our tagger using every 
ombination of 
onstraint kinds.On the one hand, the results in tables 4.8 and 4.9 show that our tagger performs slightlyworse than a HMM tagger in the same 
onditions9, that is, when using only bigram informa-tion.On the other hand, those results also show that sin
e our tagger is more 
exible than aHMM, it 
an easily a

ept more 
omplex information to improve its results up to 97:39%without modifying the algorithm.Table 4.10 shows the results adding the hand written 
onstraints. The hand written set isvery small and only 
overs a few 
ommon error 
ases. That produ
es poor results when usingthem alone (H), but they are good enough to raise the results given by the automati
allya
quired models up to 97:45%.Although the improvement obtained might seem small, the di�eren
e is statisti
ally sig-ni�
ant when the de
ision{tree model is in
orporated to any n-gram model. In addition, it9Hand analysis of the errors made by the algorithm suggest that the worse results may be due to noisein the training and test 
orpora, i.e., relaxation algorithm seems to be more noise{sensitive than a Markovmodel. Further resear
h is required on this point.



4.3. EXPERIMENTS ON OTHER NLP TASKS 63ambiguous overallH 86:41% 95:06%BH 91:88% 97:05%TH 92:04% 97:11%BTH 92:32% 97:21%CH 91:97% 97:08%BCH 92:76% 97:37%TCH 92:98% 97:45%BTCH 92:71% 97:35%Table 4.10: Results of our tagger using every 
ombination of 
onstraint kinds and handwritten 
onstraints.must be taken into a

ount that we are moving very 
lose to the best a
hievable result withthe 
urrent te
hniques and resour
es. This item is further dis
ussed in se
tion 5.1.1.4.3 Experiments on other NLP tasksThe se
ond group of experiments 
onsisted of applying the algorithm to di�erent NLP tasksother than POS tagging. The experiments presented in se
tion 4.2 had shown that theperforman
e on POS tagging is at least as good as that of 
urrent statisti
al taggers, andthat the relaxation algorithm is able to 
ombine 
onstraints obtained from di�erent knowledgesour
es.The set of experiments des
ribed in this se
tion was used to test whether the algorithm
ould easily 
ope with 
onstraints on features other than part-of-spee
h and perform otherdisambiguation tasks, as well as its ability to simultaneously disambiguate more than onefeature.4.3.1 Shallow ParsingThe use of language models based on 
ontext 
onstraints has a su

essful representative inthe Constraint Grammar formalism [Karlsson et al. 95℄ and related work [Voutilainen 95,Samuelson et al. 96, Samuelson & Voutilainen 97℄. They employ only 
onstraints written bylinguists and su

essively re�ned through the use of real text 
orpora.Sin
e our system also deals with 
ontext 
onstraint models, we set up a 
ollaboration totest a hybrid model, where hand written 
ontext 
onstraints 
ould 
ooperate with statisti
allya
quired 
onstraints, su
h as bigrams or trigrams. This would enable us to 
ompare theperforman
es of a purely linguisti
 model with a purely statisti
al one, and also to 
he
kwhether they 
an 
ollaborate to produ
e better results.Those experiments were performed on shallow parsing, and 
onsisted of analyzing a test
orpus with di�erent models and algorithms. The algorithms were the CG-2 ConstraintGrammar environment [Tapanainen 96℄ and the relaxation labelling algorithm. The languagemodels are: a linguist-written language model, the bi/trigram models and all possible 
ombi-nations of them. Sin
e the CG-2 environment is not able to deal with statisti
al information,it will only be used with the linguist-written model. The statisti
al and hybrid models will beapplied with relaxation labelling. This work has been published in [Voutilainen & Padr�o 97℄.



64 CHAPTER 4. EXPERIMENTS AND RESULTS4.3.1.1 SettingMost hybrid approa
hes 
ombine statisti
al information with automati
ally extra
ted rule-based information [Brill 95, Daelemans et al. 96a℄. Relatively little attention has been paidto models where the statisti
al approa
h is 
ombined with a truly linguisti
 model (i.e. onegenerated by a linguist). This experiment is based on one su
h approa
h: synta
ti
 ruleswritten by a linguist are 
ombined with statisti
al information using the relaxation labellingalgorithm.In this 
ase, the appli
ation is very shallow parsing: identi�
ation of verbs, premodi-�ers, nominal and adverbial heads, and 
ertain kinds of postmodi�ers. We 
all this parsera noun phrase parser. The system ar
hite
ture is presented in �gure 4.1, and 
ombines twoapproa
hes:(i) a linguisti
 language model whi
h is used as a model to parse the test 
orpus as wellas a model to disambiguate the training 
orpus and thus obtain a sour
e of almost{supervised knowledge to a
quire statisti
al models from.(ii) two n-gram statisti
al language models {namely, bigram and trigram{ a
quired fromthe aforementioned training 
orpus.
StatisticsStatistical

model
language
Linguistic

language
model

Hybrid language model

collector

training corpus

Ambiguous

training corpus
disambiguated
Partially 

test corpus

Ambiguous Relaxation

labeling

Disambiguated

test corpus

Linguistic
parser

Figure 4.1: Parser ar
hite
ture.The input is English text morphologi
ally tagged with a rule-based tagger 
alled En-gCG [Voutilainen et al. 1992, Karlsson et al. 95℄. Synta
ti
 word-tags {des
ribed below{ areadded as alternatives (e.g. ea
h adje
tive gets a premodi�er tag, postmodi�er tag and a nom-inal head tag as alternatives). The system should remove 
ontextually illegitimate tags andleave inta
t ea
h word's most appropriate tag. In other words, the synta
ti
 language modelis applied by a disambiguator.The parser has a re
all of 100% if all words retain the 
orre
t morphologi
al and synta
ti
reading; the system's pre
ision is 100% if the output 
ontains no illegitimate morphologi
al
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ti
 readings. In pra
ti
e, some 
orre
t analyses are dis
arded, and some ambiguitiesremain unresolved.The system 
an use linguisti
 rules and 
orpus-based statisti
s. Notable about the systemis that minimal human e�ort was needed for 
reating its language models (the linguisti

onsisting of synta
ti
 disambiguation rules based on the Constraint Grammar framework[Karlsson 90, Karlsson et al. 95℄; the 
orpus-based 
onsisting of bigrams and trigrams):� Only one day was spent on writing the 107 synta
ti
 disambiguation rules used by thelinguisti
 parser.� No human annotators were needed for annotating the training 
orpus (218,000 wordsof journalese) used by the data-driven learning modules of this system: the training
orpus was annotated by the following pro
edure:1. It was tagged using the EngCG morphologi
al tagger.2. The tagged text was made synta
ti
ally ambiguous by adding the alternative syn-ta
ti
 tags to the words.3. Finally, the synta
ti
 ambiguities were solved by applying the parser with the 107disambiguation rules.The system was tested against a fresh sample of �ve texts (6,500 words). The system's re
alland pre
ision was measured by 
omparing its output to a manually disambiguated version ofthe text. Re
all is the per
entage of words that get the 
orre
t tag among the tags proposedby the system. Pre
ision is the per
entage of tags proposed by the system that are 
orre
t.Also the relative 
ontributions of the linguisti
 and statisti
al 
omponents were evaluated.The linguisti
 rules seldom dis
ard the 
orre
t tag, i.e. they have a very high re
all, but theirproblem is remaining ambiguity. The problems of the statisti
al 
omponents are the opposite:their re
all is 
onsiderably lower, but more (if not all) ambiguities are resolved. When these
omponents are used in a balan
ed way, the system's overall re
all is 97:2% { that is, 97:2%of all words get the 
orre
t analysis { and its pre
ision is 96:1% { that is, of the readingsreturned by the system, 96:1% are 
orre
t.4.3.1.2 Grammati
al representationThe input of the parser is morphologi
ally analyzed and disambiguated text enri
hed withalternative synta
ti
 tags, e.g."<others>""other" PRON NOM PL �>N �NH"<moved>""move" <SV> <SVO> V PAST VFIN �V"<away>""away" ADV ADVL �>A �AH"<from>""from" PREP �DUMMY"<traditional>""traditional" A ABS �>N �N< �NH



66 CHAPTER 4. EXPERIMENTS AND RESULTS"<jazz>""jazz" <-Indef> N NOM SG �>N �NH"<pra
ti
e>""pra
ti
e" N NOM SG �>N �NH"pra
ti
e" <SVO> V PRES -SG3 VFIN �VEvery indented line represents a morphologi
al analysis. Synta
ti
 tags start with the "�"sign. A word is synta
ti
ally ambiguous if it has more than one synta
ti
 tags (e.g. pra
ti
eabove has three alternative synta
ti
 tags). The above sample shows that some morphologi
alambiguities are not resolved by the rule-based EngCG morphologi
al disambiguator.Next we des
ribe the synta
ti
 tags:� �>N represents premodi�ers and determiners.� �N< represents a restri
ted range of postmodi�ers and the determiner "enough" fol-lowing its nominal head.� �NH represents nominal heads (nouns, adje
tives, pronouns, numerals, ING-forms andnon-�nite ED-forms).� �>A represents those adverbs that premodify (intensify) adje
tives (in
luding adje
tivalING-forms and non-�nite ED-forms), adverbs and various kinds of quanti�ers (
ertaindeterminers, pronouns and numerals).� �AH represents adverbs that fun
tion as head of an adverbial phrase.� �A< represents the postmodifying adverb "enough".� �V represents verbs and auxiliaries (in
luding the in�nitive marker "to").� �>CC represents words introdu
ing a 
oordination ("either", "neither", "both").� �CC represents 
oordinating 
onjun
tions.� �CS represents subordinating 
onjun
tions.� �DUMMY represents all prepositions, i.e. the parser does not address the atta
hmentof prepositional phrases.4.3.1.3 Synta
ti
 rulesRule formalismThe rules follow the Constraint Grammar formalism, and they were applied using the re
entparser-
ompiler CG-2 [Tapanainen 96℄. The parser reads a senten
e at a time and dis
ardsthose ambiguity-forming readings that are disallowed by a 
onstraint.Next we des
ribe some basi
 features of the rule formalism. The ruleREMOVE (�>N)(*1C <<< OR (�V) OR (�CS) BARRIER (�NH));



4.3. EXPERIMENTS ON OTHER NLP TASKS 67removes the premodi�er tag �>N from an ambiguous reading if somewhere to the right (*1)there is an unambiguous (C) o

urren
e of a member of the set <<< (senten
e boundarysymbols) or the verb tag �V or the subordinating 
onjun
tion tag �CS, and there are nointervening tags for nominal heads (�NH).This is a partial rule about 
oordination:REMOVE (�>N)(NOT 0 (DET) OR (NUM) OR (A))(1C (CC))(2C (DET));It removes the premodi�er tag if all three 
ontext-
onditions are satis�ed:� the word to be disambiguated (0) is not a determiner, numeral or adje
tive,� the �rst word to the right (1) is an unambiguous 
oordinating 
onjun
tion, and� the se
ond word to the right is an unambiguous determiner.The rules 
an refer to words and tags dire
tly or by means of prede�ned sets. They 
anrefer not only to any �xed 
ontext positions; also referen
e to 
ontextual patterns is possible.The rules never dis
ard a last reading, so every word retains at least one analysis. On theother hand, an ambiguity remains unresolved if there are no rules for that parti
ular type ofambiguity.Grammar developmentA day was spent on writing 107 
onstraints; about 15,000 words of the parser's output wereproof-read during the pro
ess. The routine was the following:1. The 
urrent grammar (
ontaining e.g. 2 rules) is applied to the ambiguous input in a`tra
e' mode in whi
h the parser also indi
ates, whi
h rule dis
arded whi
h analysis,2. The grammarian observes remaining ambiguities and proposes new rules for disam-biguating them, and3. He also tries to identify misanalyses (
ases where the 
orre
t tag is dis
arded) and, usingthe tra
e information, 
orre
ts the faulty rule.This routine is useful if the development time is very restri
ted, and only the most 
om-mon ambiguity types have to be resolved with reasonable su

ess. However, if the grammarshould be of a very high quality (extremely few mispredi
tions, high degree of ambiguity reso-lution), a large test 
orpus, formally similar to the input ex
ept for the manually added extrainformation about the 
orre
t analysis, should be used. This kind of test 
orpus would en-able the automati
 identi�
ation of mispredi
tions as well as 
ounting of various performan
estatisti
s for the rules. However, manually disambiguating a test 
orpus of a few hundredthousand words would probably require a human e�ort of at least a month.Sample outputThe following is genuine output of the linguisti
 (CG-2) parser using the 107 synta
ti
 disam-biguation rules. The tra
es starting with "S:" indi
ate the line on whi
h the applied rule isin the grammar �le. One synta
ti
 (and morphologi
al) ambiguity remains unresolved: untilremains ambiguous due to preposition and subordinating 
onjun
tion readings.
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hen>" S:46"aa
hen" <*> <Proper> N NOM SG �NH"<remained>""remain" <SVC/N> <SVC/A> V PAST VFIN �V"<a>""a" <Indef> DET CENTRAL ART SG �>N"<free>" S:316, 49"free" A ABS �>N"<imperial>" S:49, 57"imperial" A ABS �>N"<
ity>" S:46"
ity" N NOM SG �NH"<until>""until" PREP �DUMMY"until" <**CLB> CS �CS"<o

upied>" S:116, 345, 46"o

upy" <SVO> PCP2 �V"<by>""by" PREP �DUMMY"<fran
e>" S:46"fran
e" <*> <Proper> N NOM SG �NH"<in>""in" PREP �DUMMY"<1794>" S:121, 49"1794" <1900> NUM CARD �NH"<$.>"4.3.1.4 Hybrid language modelTo solve shallow parsing with the relaxation labelling algorithm we model ea
h word in thesenten
e as a variable, and ea
h of its possible readings as a label for that variable. We startwith a uniform weight distribution.We will use the algorithm to sele
t the right synta
ti
 tag for every word. Ea
h iterationwill in
rease the weight for the tag whi
h is 
urrently most 
ompatible with the 
ontext andde
rease the weights for the others.Sin
e 
onstraints are used to de
ide how 
ompatible a tag is with its 
ontext, they haveto assess the 
ompatibility of a 
ombination of readings. We adapt CG 
onstraints des
ribedabove.The REMOVE 
onstraints express total in
ompatibility10 and SELECT 
onstraintsexpress total 
ompatibility (a
tually, they express in
ompatibility of all other possibilities).The 
ompatibility value for these should be at least as strong as the strongest value for astatisti
ally obtained 
onstraint (see below), whi
h happens to be about �10.But be
ause we want the linguisti
 part of the model to be more important than thestatisti
al part and be
ause a given label will re
eive the in
uen
e of about two bigrams10We model 
ompatibility values using mutual information [Cover & Thomas 91℄, whi
h enables us to usenegative numbers to state in
ompatibility.



4.3. EXPERIMENTS ON OTHER NLP TASKS 69and three trigrams11, a single linguisti
 
onstraint might have to override �ve statisti
al
onstraints. So we will make the 
ompatibility values for linguisti
 rules six times strongerthan the strongest statisti
al 
onstraint, that is, �60.Sin
e in our implementation of the CG parser [Tapanainen 96℄ 
onstraints tend to be ap-plied in a 
ertain order { e.g. SELECT 
onstraints are usually applied before REMOVE
onstraints { we adjust the 
ompatibility values to get a similar e�e
t: if the value for SE-LECT 
onstraints is +60, the value for REMOVE 
onstraints will be lower in absolutevalue, (i.e. �50). With this we ensure that two 
ontradi
tory 
onstraints (if there are any) donot 
an
el ea
h other. The SELECT 
onstraint will win, as if it had been applied before.This enables using any Constraint Grammar with this algorithm although we are applyingit more 
exibly: we do not de
ide whether a 
onstraint is applied or not. It is always appliedwith an in
uen
e (perhaps zero) that depends on the weights of the labels.If the algorithm should apply the 
onstraints in a more stri
t way, we 
an introdu
e anin
uen
e threshold under whi
h a 
onstraint does not have enough in
uen
e, i.e. it is notapplied.We 
an add more information to our model in the form of statisti
ally derived 
onstraints.Here we use bigrams and trigrams as 
onstraints.The 218,000-word 
orpus of journalese from whi
h these 
onstraints were extra
ted wasbuild as des
ribed in se
tion 4.3.1.1.It is noti
eable that no human e�ort was spent on 
reating this training 
orpus. Thetraining 
orpus is partly ambiguous, so the bi/trigram information a
quired will be slightlynoisy, but a

urate enough to provide an almost supervised statisti
al model.For instan
e, the following 
onstraints have been statisti
ally extra
ted from bi/trigramo

urren
es in the training 
orpus.-0.4153 (�V) 4.2808 (�>A)(1 (�>N)); (-1 (�>A))(1 (�AH));The 
ompatibility value assigned to these 
onstraints is the mutual information betweenthe a�e
ted synta
ti
 tag and the 
ontext des
ribed by the 
onstraint. It is 
omputed fromthe probabilities estimated from the training 
orpus. We do not need to manually assign the
ompatibility values here, sin
e we 
an estimate them from the 
orpus.The 
ompatibility values assigned to the hand{written 
onstraints express the strength ofthese 
onstraints 
ompared to the statisti
al ones. Modi�ng those values means 
hanging therelative weights of the linguisti
 and statisti
al parts of the model.4.3.1.5 Preparation of the ben
hmark 
orpusFor evaluating the systems, �ve roughly equal-sized ben
hmark 
orpora not used in the de-velopment of our parsers and taggers were prepared. The texts, totaling 6,500 words, were
opied from the Gutenberg e-text ar
hive, and they represent present-day Ameri
an English.One text is from an arti
le about AIDS; another 
on
erns brainwashing te
hniques; the third11The algorithm tends to sele
t one label per variable, so there is always a bi/trigram whi
h is applied moresigni�
antly than the others.
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ribes guerilla warfare ta
ti
s; the fourth addresses the assassination of J. F. Kennedy; thelast is an extra
t from a spee
h by Noam Chomsky.The texts were �rst analysed by a re
ent version of the morphologi
al analyser and rule-based disambiguator EngCG, then the synta
ti
 ambiguities were added with a simple lookupmodule. The ambiguous text was then manually disambiguated. The disambiguated textswere also proof-read afterwards. Usually, this pra
ti
e resulted in one analysis per word.However, there were two types of ex
eption:1. The input did not 
ontain the desired alternative (due to a morphologi
al disambigua-tion error). In these 
ases, no reading was marked as 
orre
t. Two su
h words werefound in the 
orpora; they detra
t from the performan
e �gures.2. The input 
ontained more than one analyses all of whi
h seemed equally legitimate,even when semanti
 and textual 
riteria were 
onsulted. In these 
ases, all the equalalternatives were marked as 
orre
t. The ben
hmark 
orpus 
ontains 18 words (mainlyING-forms and non�nite ED-forms) with two 
orre
t synta
ti
 analyses.The number of multiple analyses 
ould probably be made even smaller by spe
ifyingthe grammati
al representation (usage prin
iples of the synta
ti
 tags) in more detail, inparti
ular in
orporating some analysis 
onventions for 
ertain apparent borderline 
ases (fora dis
ussion of spe
ifying a parser's linguisti
 task, see [Voutilainen 95℄).4.3.1.6 Experiments and resultsWe tested linguisti
, statisti
al and hybrid language models, using the CG-2 parser des
ribedin [Tapanainen 96℄ and the relaxation labelling algorithm.The statisti
al models were obtained from a training 
orpus of 218,000 words of journalese,synta
ti
ally annotated using the linguisti
 parser (se
tion 4.3.1.4).Although the linguisti
 CG-2 parser does not disambiguate 
ompletely, it seems to havean almost perfe
t re
all (Table 4.11), and the noise introdu
ed by the remaining ambiguity isassumed to be suÆ
iently lower than the signal, following the idea used in [Yarowsky 92℄.The 
olle
ted statisti
s were bigram and trigram o

urren
es.The algorithms and models were tested against the above des
ribed hand{disambiguatedben
hmark 
orpus.Models are 
oded as follows: B stands for bigrams, T for trigrams and C for hand{written
onstraints. All 
ombinations of information types are tested. Sin
e the CG-2 parser handlesonly Constraint Grammars, we 
an not test this algorithm with statisti
al models.CG-2 parser Relaxation labellingpre
ision - re
all pre
ision - re
allC 90:8% � 99:7% 93:3% � 98:4%for
ed-C 95:0% � 95:0% 95:8% � 95:8%Table 4.11: Results obtained with the linguisti
 model.Table 4.11 summarizes the results obtained when using only a linguisti
 model. Resultsare given in pre
ision and re
all sin
e the model does not disambiguate 
ompletely. Resultswhen for
ing 
omplete disambiguation through random sele
tion are also presented.



4.3. EXPERIMENTS ON OTHER NLP TASKS 71Relaxation labellingpre
ision - re
allB 87:4% � 88:0%T 87:6% � 88:4%BT 88:1% � 88:8%for
ed-BT 88:5% � 88:5%Table 4.12: Results obtained with statisti
al models.Table 4.12 shows the results given by the statisti
al models, whi
h are rather worse, sin
eshallow parsing is a task more diÆ
ult to 
apture in a n-gram model than POS tagging.Relaxation labellingpre
ision - re
allBC 96:0% � 97:0%TC 95:9% � 97:0%BTC 96:1% � 97:2%for
ed-BTC 96:7% � 96:7%Table 4.13: Results obtained with hybrid models.Finally, table 4.13 presents the results produ
ed by the hybrid models, whi
h are signi�-
antly better than the previous ones, that is, the 
ollaboration between models improved theperforman
e in this 
ase as well as in POS-tagging (se
tion 4.2).These results suggest the following 
on
lusions:� Using the same language model (107 rules), the relaxation algorithm disambiguatesmore than the CG-2 parser. This is due to the weighted rule appli
ation, and results inmore misanalyses and less remaining ambiguity.� The statisti
al models are 
learly worse than the linguisti
 one. This 
ould be due tothe noise in the training 
orpus, but it is more likely 
aused by the inherent diÆ
ultyof the task: we are dealing here with shallow synta
ti
 parsing, whi
h is probably morediÆ
ult to 
apture in a statisti
al model than POS tagging.� The hybrid models produ
e less ambiguous results than the other models. The numberof errors is mu
h lower than was the 
ase with the statisti
al models, and somewhathigher than was the 
ase with the linguisti
 model. The gain in pre
ision seems to beenough to 
ompensate for the loss in re
all, although, obviously, this depends on the
exibility of one's requirements.� There does not seem to be mu
h di�eren
e between BC and TC hybrid models. Thereason is probably that the job is mainly done by the linguisti
 part of the model { whi
hhas a higher relative weight { and that the statisti
al part only helps to disambiguate
ases where the linguisti
 model does not make a predi
tion. The BTC hybrid modelis slightly better than the other two.� The small di�eren
e between the hybrid models suggest that some reasonable statisti
sprovide enough disambiguation, and that not very sophisti
ated information is needed.



72 CHAPTER 4. EXPERIMENTS AND RESULTS4.3.2 Word Sense DisambiguationThe utility of the 
onstraint-based models applied through relaxation labelling algorithms wasalso 
he
ked in the task of word sense disambiguation. Nevertheless, the work des
ribed inthis se
tion is in an early stage and the obtained results have still to be improved. Fa
tors thata�e
t this part of the work are, apart from the intrinsi
 diÆ
ulty of the task, the la
k of largesense-tagged 
orpus to perform training {we use SemCor [Miller et al. 93, Miller et al. 94℄,whi
h 
ontains only some 230 Kwords{ and the diÆ
ulty to obtain a

urate 
ontext 
on-straints involving word senses.Sin
e, as stated in [Wilks & Stevenson 96, Wilks & Stevenson 97℄, knowing the part-of-spee
h tag for a word helps to redu
e the sense ambiguity in a large amount of 
ases, weaddressed the 
ombined problem POS+WSD. The way in whi
h this was performed was thefollowing: we 
onsidered that what is assigned to ea
h word is not a single tag but a reading,being a reading a set of word features, that may in
lude {among others{ part-of-spee
h tag,sense, lemma, et
.Then, the task of disambiguation 
onsists of sele
ting the most appropriate reading forthe 
urrent 
ontext, and this 
an be done through relaxation algorithms if 
ontext 
onstraintson the existing features are available.4.3.2.1 Sear
hing for appropriate semanti
 
onstraintsDue to their higher 
omplexity, 
ontext 
onstraints on semanti
 features are more diÆ
ultto obtain than other kinds of models, su
h as statisti
al information for POS tagging. ThisdiÆ
ulty is found not only in automati
ally a
quired models {sin
e the 
omplexity of the taskoverwhelms most a
quisition algorithms, and not enough supervised data is available to feedthem{, but also in manually developed models, sin
e the larger number of items to deal withmakes it a high labour 
ost task to manually develop a linguisti
 model for WSD.In order to obtain semanti
 
onstraints to feed the relaxation algorithm with, we tried toextra
t knowledge from di�erent sour
es, and use them either 
ombined or separately.The used 
onstraints in
luded the following knowledge:� POS bigrams, whi
h will perform the part-of-spee
h disambiguation.� Most likely sense sele
tion on
e the POS tag is known. The senses are 
onsidered to beoutput by WordNet sorted from most likely to less likely.� Pairwise 
on
eptual distan
e [Sussna 93, Agirre & Rigau 95℄ among noun senses, mea-sured in the WordNet taxonomy [Miller et al. 91℄. These 
onstraints try to 
apture thetopi
 the senten
e is about.Ea
h pair of noun senses in WordNet generates a binary 
onstraint, stating that theyhave a 
ompatibility inversely proportional to their distan
e, so the nearer they are, themore 
ompatible12. This raises the support for noun senses that are neighbour in theWordNet taxonomy.These 
onstraints do not 
onsider the relative position of the words. This means that anoun sense is a�e
ted by as many 
onstraints as possible senses may have the nouns in12Obviously, for eÆ
ien
y reasons, not all the possible 
onstraints are generated a priori. The distan
e is
omputed only when a pair of senses appears. That is, 
onstraints are dinami
ally generated.
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ontext {being the 
ontext the whole senten
e where it appears{, regardless of theirrelative position.Obviously, this approa
h assumes that the nouns appearing in the same senten
e tendto have 
on
eptually near senses. This maybe true in some {too obvious{ 
ases su
has The nurse helps the do
tor at the hospital., but it also may be misleadingin many other 
ases {more likely to happen in a real 
orpus{, su
h as The 
hild feltsi
k and the nurse had to take him to the hospital to see the do
tor.In addition, sin
e WordNet 
onsists of separate hierar
hies for nouns and verbs, 
on-
eptual distan
e between nouns and verbs 
an not be 
omputed. This prevents us fromusing this kind of 
onstraints to dete
t the di�eren
e between senten
es like The 
raneate the fish and The 
rane lifted the fish 
ontainer.� WordNet top synsets pairwise 
o-o

urren
es, interpreted as 
lass 
o-o

urren
es. These
onstraints try to be a kind of semanti
 bigrams.Ea
h top synset is 
onsidered as a 
lass, and all its des
endant synsets are 
onsideredto belong to that 
lass. Then, 
lass 
o-o

urren
es are 
omputed on a training 
orpus,and used as binary 
onstraints. As in the previous 
ase, no positional information is
onsidered, two 
lasses are 
onsidered to 
o-o

ur if they appear in the same senten
e,regardless of their position. Nevertheless, this approa
h enables deriving verb{noun
onstraints, sin
e there will be 
o-o

urren
es of noun and verb 
lasses. Anyway, the
aw here is that verbs are organized in WordNet in a very 
at hierar
hy, that is, mostverbs are tops and 
onstitute a 
lass on their own. This produ
es a large number ofpossible verb{noun 
onstraints, whi
h require a mu
h larger 
orpus to be estimated.This kind of 
onstraints have also been a
quired using WordNet �le 
odes instead oftop synsets as 
lass identi�ers.The assumption that this approa
h requires is that senses belonging to a given 
lasstend to appear more with senses of 
ertain 
lasses than with senses of the others.� Automati
ally a
quired sele
tional restri
tions on verb obje
ts. The a
quisition pro
e-dure is des
ribed in [Ribas 94, Ribas 95℄ and has been outlined in se
tion 3.3.2.3.Sele
tional restri
tions try to 
apture the 
onstraints that a phrase head imposes to its
omplements. In our 
ase, we fo
used on the 
onstraints that a verb imposes to itsobje
ts.The restri
tions are a
quired in su
h a way that for ea
h verb, a numeri
al value (proba-bility, asso
iation ratio, . . . ) is assigned to the preferred 
lasses for ea
h of its synta
ti
positions (subje
t, dire
t obje
t, indire
t obje
t, prepositional obje
t). Converting theserestri
tions to 
ontext 
onstraints is straightforward.The strongest assumption taken in this approa
h is that verbs are 
onsidered as formsnot as senses, i.e. sele
tional restri
tions for polysemi
 verbs do not distinguish thedi�erent verb senses.� Hand written sele
tional restri
tions on verb obje
ts. The hand written restri
tions wereonly a small subset 
overing some sample verbs, and are not statisti
ally signi�
ant, butwill enable us to 
he
k whether appropriate 
onstraints may perform the task a

urately.
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onstraints was used to test the system with a modelwithout the problems related to overgeneralization presented by the automati
ally a
-quired sele
tional restri
tions (see se
tion 4.3.2.2), and without the problems that maybe 
aused by the assumptions des
ribed above for the di�erent kinds of 
onstraintsemployed.4.3.2.2 Performan
e analysis of the proposed 
onstraintsThe results of the experiments des
ribed in se
tion 4.3.2.1 point that the semanti
 
onstraintsdo not signi�
antly improve the performan
e for WSD respe
t a most-likely sense assignationon
e the POS tag is known. A
tually, the e�e
t of the semanti
 
onstraints is that while theydo 
orre
t a 
ertain number of noun senses they also turn wrong a similar amount.Anyway, it must be taken into a

ount that the POS-tagging plus most-likely sense se-le
tion produ
e almost a 58% of 
orre
t synset sele
tion and a 63% for 
orre
t WN �le 
odesele
tion, on all words. If we fo
us on nouns only, the results are still better, 63% for synsetsand 68% for WN �le 
odes. This is due to the fa
t that the most-likely sense order yieldedby WN is based on sense o

urren
es in SemCor, so we are using over-�tted knowledge, andwe have a very high baseline whi
h is diÆ
ult to outperform.Other reasons for the poor 
ontribution of tested 
onstraints are:� The 
on
eptual distan
e and top 
o-o

urren
es 
onstraints are poorly informed heuris-ti
s that may not 
ontain any new information that was not in the most-likely senseheuristi
. In addition, the later model was a
quired from a rather small training 
orpus,whi
h 
auses the 
o-o

urren
es estimations to be unreliable, spe
ially those involvingverb 
lasses sin
e most verbs in WordNet 
onstitute a 
lass on their own.� The automati
ally a
quired sele
tional restri
tions where a
quired taking into a

ountthe synta
ti
 position of the noun, and when the 
onstraints are applied by relaxation,this information is not available, so the �rst noun to the left of the verb is 
onsidered tobe its subje
t, the �rst to the right the dire
t obje
t, and so on. This may 
ause thatmany 
onstraints are either improperly applied or not applied at all when they shouldbe.� The automati
ally a
quired sele
tional restri
tions were a
quired from only positiveexamples, whi
h may lead to over-generalization, thus they may be applied in 
aseswhen they should not.� The sele
tional restri
tions do not 
onsider verb sense ambiguity, so, a restri
tion statingthat the obje
t of verb eat must be of 
lass <food>, would {wrongly{ be applied inthe senten
e: \the a
id ate the soap 
ake.", where the verb eat has the sense of<
orrode>. Thus the <food> sense for 
ake would be sele
ted, instead of the 
orre
t<artifa
t> sense.4.3.2.3 Using a small hand{written modelIn order to analyze in detail how relaxation uses the semanti
 
onstraints and to 
he
k whetherwe 
an expe
t better results from it, we fo
used on one verb and on some of its sele
tionalrestri
tions and studied the algorithm behaviour. The 
hoosen verb had to have a high
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y in the 
orpus and have also a high number of disambiguation errors13 in its obje
tnouns, in order to 
he
k whether the 
onstraints 
ould solve them. Su
h 
onditions weremat
hed by several 
ommon verbs su
h as to give, to �nd, to hold, et
., probably due to theirhigh ambiguity, and to the fa
t that they are basis to many phrasal verbs. Although a fewrestri
tions for ea
h of them were written, fo
us was set on verb to give sin
e it was the mostfrequent verb {apart of the ubiquitous to be and to have{ with errors in its obje
t nouns inthe 
orpus.We extra
ted from SemCor all the senten
es 
ontaining any form of the verb to give, andgot a small 
orpus of 6 Kw and 220 senten
es. We disambiguated them using the model forPOS-bigrams plus most-likely sense sele
tion. Then we extended the language model in twoways: On the one hand, with the sele
tional 
onstraints for the verb to give automati
allya
quired by the [Ribas 95℄ algorithm (see se
tion 3.3.2.3), whi
h are listed in table 4.14. Onthe other hand, we manually wrote the 5 sele
tional restri
tions presented in table 4.15. Verbambiguity was not 
onsidered in any 
ase (give has 22 senses in WN, but no distin
tions weremade). 2:85 [ give SUBJECT = <a
t, human-a
tion> ℄2:60 [ give SUBJECT = <group, grouping> ℄1:11 [ give SUBJECT = <person, individual> ℄5:94 [ give OBJECT-1 = <rate (magnitude-relation)> ℄3:59 [ give OBJECT-1 = <information (
ontent)> ℄3:19 [ give OBJECT-1 = <message (
ommuni
ation)> ℄2:90 [ give OBJECT-1 = <group, grouping> ℄2:34 [ give OBJECT-1 = <person, individual> ℄2:24 [ give OBJECT-1 = <state> ℄1:55 [ give OBJECT-1 = <a
t, human-a
tion> ℄3:93 [ give OBJECT-2 = <opportunity, 
han
e> ℄3:06 [ give OBJECT-2 = <a
tivity, behaviour> ℄2:79 [ give OBJECT-2 = <attribute> ℄2:34 [ give OBJECT-2 = <
ognition, knowledge> ℄Table 4.14: Automati
ally a
quired sele
tional restri
tions for verb to give.10:0 [ give SUBJECT = <person, individual> ℄10:0 [ give OBJECT-1 = <possession> ℄10:0 [ give OBJECT-1 = <time> ℄10:0 [ give OBJECT-1 = <freedom, liberty> ℄10:0 [ give OBJECT-1 = <status, so
ial-state> ℄Table 4.15: Hand written sele
tional restri
tions for verb to give.The 
ompatibility values for automati
ally a
quired 
onstraints were 
omputed from theo

urren
es in training 
orpus. For the hand written 
onstraints, the 
ompatibility was as-signed following the same 
riterion than in the shallow parsing 
ase. As des
ribed in se
tion4.3.1.4, the 
ompatibility value assigned to the 
onstraints was at least as large as the largest13Disambiguation errors made by most-likely sense sele
tion given the POS tag.
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al 
onstraint {in this 
ase, the POS bigrams{. Sin
e the larger 
ompatibil-ity for a POS binay 
onstraint is about �10, this is the 
ompatibility assigned to the semanti

onstraints.Thus, the to give test 
orpus was disambiguated using the following models:� POS bigrams plus most-likely sense sele
tion.� POS bigrams plus most-likely sense sele
tion plus the 14 automati
ally a
quired to give
onstraints.� POS bigrams plus most-likely sense sele
tion plus the 5 manually written to give 
on-straints.Results point out that automati
ally a
quired 
onstraints seem to perform worse thanhand written 
onstraints. This is due not only to their higher overgeneralization degree, butalso to the fa
t that a larger number of 
onstraints may imply a larger number of 
on
i
ts,and thus a larger amount of wrongly resolved 
on
i
ts. See the examples below for moredetails.Although the used sele
tional restri
tions are few in both 
ases (5 hand{written and 14automati
ally learned), the obtained results o�er a sample of a wide range of possibilities:Some words are 
orre
ted to the synset level while others only to the WN �le 
ode level, someare turned wrong be
ause of an in
orre
t appli
ation of a 
onstraint that should distinguishverb senses, and some others are turned wrong by the in
orre
t appli
ation of a 
onstraintthat should use more pre
ise synta
ti
 information.The following examples show some e�e
ts of the sele
tional restri
tions presented above.A reading marked with p indi
ates wrong POS tag (and thus, wrong �le 
ode and wrongsynset). When marked with f, it indi
ates right POS tag but wrong WN �le 
ode (and thus,wrong synset). A reading marked with s indi
ates wrong synset but right POS tag and �le
ode. Readings marked with t are test 
orpus in
oheren
es (i.e. a noun POS-tag with a verbsense) and are left out of performan
e analysis.Note that the synset assigned to the verb give is always <give (state, say)>. This isbe
ause the used sele
tional 
onstraints only restri
t noun senses, so verbs are assigned theirmost likely sense.The manual 
onstraints were su

essful in assigning the right synset to nouns in whi
h themost-likely heuristi
 was wrong, as in the following example senten
e, where the word awardwas 
orre
tly 
hanged from the <honour> to the <prize> synset.POS + Most Likelya DTspe
ial JJ spe
ial adj.all <spe
ial>award f NN award noun.
ommuni
ation <honour>was VBD be verb.stative <have-the-quality-of-being>given f VBN give verb.possession <give (state, say)>to TOBob NPNordmann NP



4.3. EXPERIMENTS ON OTHER NLP TASKS 77POS + Most Likely + Hand{writtena DTspe
ial JJ spe
ial adj.all <spe
ial>award NN award noun.possession <prize>was VBD be verb.stative <have-the-quality-of-being>given f VBN give verb.possession <give (state, say)>to TOBob NPNordmann NPIn the following 
ase the algorithm assigned the right WN �le 
ode but not the rightsynset, i.e, the word host �le 
ode was 
orre
ted from noun.animal to noun.person, butthe hand{written 
onstraints were not spe
i�
 enough to distinguish between the assigned<master-of-
eremonies> synset and the 
orre
t <host (adult)> sense.POS + Most Likelytheir PP$host f NN host noun.animal <host (organism)>gives s VBZ give verb.possession <give (state,say)>them PPfresh JJ fresh adj.all <fresh>
lothes NNS 
lothes noun.artifa
t <
lothes>POS + Most Likely + Hand-writtentheir PP$host s NN host noun.person <master-of-
eremonies>gives s VBZ give verb.possession <give (state, say)>them PPfresh JJ fresh adj.all <fresh>
lothes NNS 
lothes noun.artifa
t <
lothes>In the same 
ase, the automati
ally a
quired model got wrong the word host, be
auseof a restri
tion 
on
i
t: The automati
ally a
quired model not only in
ludes the 
onstraint[give SUBJECT = <person, individual>℄, but also another 
onstraint on the subje
t of theverb give: [give SUBJECT = <group, grouping>℄. Although both 
onstraints are 
orre
t,they 
on
i
t in the word host, sin
e it may take either a <person, individual> sense or a<group, grouping> one (<horde>). In this parti
ular 
ase, the later was {wrongly{ sele
teddue to the higher 
ompatibility value assigned to the se
ond 
onstraint. This points out thatmore 
ontext information should be used to 
orre
tly disambiguate su
h 
ases.The 
onstraints written to better diambiguate senses, may also help to 
orre
t wordswhi
h would be assigned a wrong POS tag. This happens in the next example, where theword rein was assigned a VB (verb) tag, but the sele
tion of the <free-rein, rein> synsetdue to the manual 
onstraint [give OBJECT-1 = <freedom, liberty>℄ 
aused the tag to be
orre
tly 
hanged to NN (noun).POS + Most Likelyhad VBD have verb.possession <have-got, hold>



78 CHAPTER 4. EXPERIMENTS AND RESULTSnot RB not adv.all <not>dared s VBD dare verb.so
ial <presume-to>to TOgive s VB give verb.possession <give (state, say)>rein p VB rein verb.
hange <rule, 
onstrol>to TOimpulses f NNS impulse noun.attribute <momentum>POS + Most Likely + Hand{writtenhad VBD have verb.possession <have-got, hold>not RB not adv.all <not>dared s VBD dare verb.so
ial <presume-to>to TOgive s VB give verb.possession <give (state, say)>rein NN rein noun.state <free-rein, rein>to TOimpulses f NNS impulse noun.attribute <momentum>On the other hand, the hand{written model also turned wrong two synsets where the right
hoi
e was the most likely sense. One of them is presented here: the synset for word ratewas wrongly 
hanged from <rate (magnitude-relation)> to <rate (
harge-per-unit)>. This isdue to verb polysemy, sin
e here give has the <yield> sense and not the <give (transfer)>one, the 
onstraint [give OBJECT-1 = <possession>℄ should not be applied. The only wayto prevent the 
onstraint from being applied is that it was spe
i�
 for the <give (transfer)>sense. POS + Most LikelyThis DTgives s VBZ give verb.possession <give (state, say)>a DTrate NN rate noun.time <rate (magnitude-relation)>of INshear NN shear noun.phenomenon <shear>of IN**f NNPOS + Most Likely + Hand{writtenThis DTgives s VBZ give verb.possession <give (state, say)>a DTrate f NN rate noun.possession <rate (
harge-per-unit)>of INshear NN shear noun.phenomenon <shear>of IN**f NNOn the 
ontrary, in the same 
ase, the automati
ally a
quired model sele
ted the rightsense for the word rate. Sin
e the automati
 model does not 
ontaint the 
onstraint whi
h
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ts the wrong <possession> sense, [give OBJECT-1 = <possession>℄, it is not sele
ted.In addition, the automati
 model does 
ontain a restri
tion whi
h reinfor
es the most-likelyoption anyway: [give OBJECT-1 = <rate (magnitude-relation)>℄.There was also one error made by the manual model due to a wrong 
onstraint appli-
ation 
aused by insuÆ
ient synta
ti
 information. The word �gure was wrongly taken asthe subje
t of gives and the 
onstraint [give SUBJECT = <person>℄ gave more supportto the <�gure (important-person)> sense and 
aused it to be 
hosen instead of the right<�gure (illustration)>.POS + Most LikelyThe DTtemperature NN temperature noun.attribute <temperature>distribution NN distribution noun.
ognition <distribution>of INfigure NN �gure noun.
ommuni
ation <�gure (illustration)>4 CDgives VBZ give verb.possession <give (state, say)>**f NNall t DT all adj.all <all>blowing t NN blow verb.weather <blow>rates NNS rate noun.time <rate (magnitude-relation)>POS + Most Likely + Hand{writtenThe DTtemperature NN temperature noun.attribute <temperature>distribution NN distribution noun.
ognition <distribution>of INfigure f NN �gure noun.person <�gure (important-person)>4 CDgives VBZ give verb.possession <give (state, say)>**f NNfor INall t DT all adj.all <all>blowing t NN blow verb.weather <blow>rates NNS rate noun.time <rate (magnitude-relation)>The results obtained so far point out that relaxation labelling applies properly the 
on-straints and that it 
an be used to apply multi-feature models and simultaneously solvedi�erent NLP tasks. The main 
auses of the poor results in WSD are mainly due to theunapropiateness of the used 
onstraint model and semanti
 taxonomy.Thus, the WSD issue has to be further addressed to obtain better results with relaxationlabelling algorithms. The solution seems to be in the dire
tion of taking the appropriatemeasures to avoid undesired 
onstraint appli
ations. This will require a model re�ning andthe use of more pre
ise sele
tional 
onstraints, whi
h may be adressed through the followingissues:� Use a shallow parsing model toghether with the WSD model to more pre
isely applythe 
onstraints that require synta
ti
 information.



80 CHAPTER 4. EXPERIMENTS AND RESULTS� Improve the language model, re�ning the 
onstraints to a
hieve that they take intoa

ount not only verb forms but also verb senses.� Use 
onstraint whi
h a�e
t not only noun but also verb senses.� De�ne a suitable sense granularity level in WordNet 
oarser than synset level, but �nerthan top-level.� Use ri
her 
ontext information, in
luding not only head words, but also qualifyers,prepositional phrases, et
.



Chapter 5Comparative Analysis of ResultsIn 
hapter 4 we des
ribed the performed experiments on applying relaxation algorithms toNLP, and reported the obtained results.In this 
hapter we will analyze those results and 
ompare the a

ura
y obtained withdi�erent language models in di�erent tasks, as well as 
ompare our results with those produ
edby other systems. Some 
onsiderations on performan
e evaluation and systems 
omparison{spe
ially on POS tagging{ 
an be found in se
tion 5.1.1.5.1 Part-of-spee
h TaggingThe experiments on POS tagging, as des
ribed in se
tion 4.2, 
onsisted of tagging the WSJ
orpus with di�erent language models. Those models in
luded bigram, trigram, hand-written
onstraints as well as automati
ally learned de
ision trees. The knowledge 
ontained in thedi�erent models was 
ombined to take advantage of the 
ollaboration between them. We alsoused a HMM bigram tagger and a most-likely-tag algorithm to tag the test set and establisha baseline performan
e. Results are summarized in table 5.1.From those results, we 
on
luded the following:� When using only bigram information, the relaxation algorithm is worse than the bigramHMM tagger with a 90% 
on�den
e rate. This may be indi
ating a higher sensitivityof relaxation to noise in the model.� The use of trigrams, either alone or 
ombined with bigrams yield a small improvementon the average performan
e, though not at a signi�
ant level. That is, the trigrammodel is slightly better than the bigram model, and the bigram+trigram model is inturn slightly better than the trigram model, but these improvements are not signi�
ant.� The use of an automati
ally a
quired model based on statisti
al de
ision trees des
ribedin [M�arquez & Rodr��guez 97℄ produ
es results slightly higher than the bigrams and/ortrigrams models, but {as in the previous 
ase{ there is not a signi�
ant di�eren
e either.� The 
ombination of the statisti
al models (bigram and/or trigram) plus the automat-i
ally a
quired (de
ision trees) leads to a signi�
ant improvement at a 99% 
on�den
erate respe
t the bigram/trigram model or the use of the de
ision trees alone. Thisenables us to 
on
lude two important issues: First, that the automati
ally a
quired81



82 CHAPTER 5. COMPARATIVE ANALYSIS OF RESULTSambiguous overallML 85:31% 94:66%HMM 91:75% 97:00%B 91:35% 96:86%T 91:82% 97:03%BT 91:92% 97:06%C 91:96% 97:08%BC 92:72% 97:36%TC 92:82% 97:39%BTC 92:55% 97:29%H 86:41% 95:06%BH 91:88% 97:05%TH 92:04% 97:11%BTH 92:32% 97:21%CH 91:97% 97:08%BCH 92:76% 97:37%TCH 92:98% 97:45%BTCH 92:71% 97:35%Table 5.1: Results for POS with di�erent language models. (ML stands for most-likely, B forbigrams, T for trigrams, C for automati
ally a
quired 
onstraints and H for hand-written
onstraints.)
onstraint model 
aptures relevant information that was not 
ontained in the n-grammodels and vi
e-versa, sin
e the joint result is better than those obtained by any ofthe two models alone. Se
ond, that the 
ollaboration of both models was 
orre
tly per-formed by the relaxation algorithm, whi
h proofs that it is able to 
orre
tly 
ombineknowledge from di�erent sour
es.� The use of a small set of some twenty hand written 
onstraints improves performan
eslightly, although not signi�
antly, when added to a model 
ontaining the automati
allya
quired de
ision-tree 
onstraints. The improvement is signi�
ant at a 95% 
on�den
erate when the hand written 
onstraints are added to the bigram model or to the bi-gram+trigram model. This yields the 
on
lusion that the hand written 
onstraints
ontain information that was not in
luded in the n-gram models {this is quite obvioussin
e hand written 
onstraints were linguisti
ally motivated{ but that this happens toa mu
h smaller extent in the 
ase of the automati
ally a
quired model, whi
h is alsoreasonable, sin
e the redu
ed size of the hand{written model makes it quite likely thatthe modelled phenomena were already 
aptured by the de
ision{tree model.� Sin
e our tagger is able to easily in
orporate more knowledge, the obtained results arebetter than other systems that report experiments on WSJ 
orpus: [Brill 92, Brill 95℄reports a 3-4% error rate, and [Daelemans et al. 96a℄ report 96.7% a

ura
y. We ob-tained about 97.4% a

ura
y using trigrams and automati
ally a
quired 
onstraints.Nevertheless, a more a

urate 
omparison pro
edure should be established through theuse of the same train and test 
orpus, sin
e {as mentioned in se
tion 4.2{ the results



5.1. PART-OF-SPEECH TAGGING 83may depend strongly not only on the tagset (whi
h should be the same, sin
e all re-ported resear
hes use WSJ 
orpus) but also on the size of the training and test 
orpus.Another important point that strongly a�e
ts POS taggers performan
e is the noise inthe train 
orpus {whi
h produ
es a noisy model{ as well as in the test 
orpus. Theseand other fa
tors a�e
ting taggers evaluation and 
omparison are dis
ussed in se
tion5.1.1 below.5.1.1 Some 
onsiderations on error 
ases5.1.1.1 On POS taggers evaluationAs stated in se
tion 4.2.3, measuring a tagger performan
e through its pre
ision per
entage,is a te
hnique whi
h is rea
hing a point where the error in the measure may be higher thatthe measured performan
e improvement: Tests are usually performed over noisy 
orpora,whi
h may 
ontain about 5% of tagging errors, and 
urrent taggers perform all above 95%.Thus, the amount of noise in the test 
orpus is the same order than the tagger error rate.This introdu
es an un
ertainty in the evaluation whi
h may be larger than the reportedimprovements from one system to another.Some work related to this issue is presented in [Elworthy 94b℄, who uses a variable reje
tionthreshold to de
ide whether a tagger output is reliable. The e�e
t of the threshold is enablingan eÆ
ien
y vs. a

ura
y trade-o�, i.e. a high threshold will produ
e less erroneous taggings,but will leave more words ambiguous. In a similar dire
tion, [Jost & Atwell 94℄ estimate alower bound for a tagger error rate, depending on the training 
orpus size.For instan
e, if we had a test 
orpus A whi
h we knew to 
ontain about a 5% of taggingerrors and we had a tagger that reporting 100% performan
e on that test set, our tagger,far from being a

urate, would be yielding a 5% error rate. And the other way round, if ourtagger was a
tually ideal and thus performed a
tual 100% a

ura
y {that is, perfe
t ratio overan error-free 
orpus{, only 95% a

ura
y would be reported when tested on 
orpus A, sin
ea

ura
y is 
omputed taking the test 
orpus as a referen
e point.If our tagger instead of being perfe
t-ratio was, say, 95% a

urate on an error-free 
orpus,and assuming that the 95% a

ura
y holds for either the words 
orre
tly or in
orre
tly taggedin A, when evaluated on 
orpus A the tagger would report between 90:25% and 90:50%,depending on the ambiguity ratio of the words in the 
orpus. In any 
ase, the obtained valuewould be signi�
antly lower than the a
tual tagger pre
ision. Computations are detailed intable 5.2. All �gures in this se
tion are 
omputed 
onsidering only ambiguous words.test 
orpus A tagger evaluated as amountOK OK OK 95%� 0:95 = 90:25%OK NOK NOK 95%� 0:05 = 4:75%NOK OK NOK 5%� 0:95 = 4:75%NOK NOK ? 5%� 0:05 = 0:25%total OK 90:25% � 90:50%Table 5.2: Detailed 
omputation of reported a

ura
y for an a
tual 95% pre
ise tagger when theprobability of rightly tagging a 
orre
t/in
orre
t word in A is the same (0:95).Table 5.3 illustrates the same 
ase, but assuming that the words 
orre
tly tagged in 
orpusA 
orrespond to easier ambiguities, and thus they would be more easily solved by the tagger



84 CHAPTER 5. COMPARATIVE ANALYSIS OF RESULTS(e.g. 99% of the times), and the words in
orre
tly tagged in A 
orrespond to more diÆ
ultambiguities in whi
h the tagger would make more errors (81% a

ura
y to keep the assumed95% overall pre
ision). The reported a

ura
y would then range from 94:05% to 98:10%depending on the ambiguity ratio of the 
orpus.test 
orpus A tagger evaluated as amountOK OK OK 95%� 0:99 = 94:05%OK NOK NOK 95%� 0:01 = 0:95%NOK OK NOK 5%� 0:19 = 0:95%NOK NOK ? 5%� 0:81 = 4:05%total OK 94:05% � 98:10%Table 5.3: Detailed 
omputation of reported a

ura
y for an a
tual 95% pre
ise tagger when theprobability of rightly tagging a 
orre
t/in
orre
t word in A is 0:99=0:81.For a 
orpus with low ambiguity ratio, words wrongly tagged both in the test 
orpus andin the tagger output would have higher probability of 
oin
iden
e, and thus of being 
omputedas a 
orre
t tag. For higher ambiguity ratios, this 
oin
iden
e would be less likely, and thetagger output would be more often 
orre
tly 
omputed as an error. Figure 5.1 shows how thereported tagger a

ura
y would vary depending on the ambiguity ratio of test 
orpus.

9494.59595.59696.59797.59898.5
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Reporteda

ura
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Ambiguity ratio (tags/word)

333333333333 3 3 3 3Figure 5.1: Reported a

ura
y, as a fun
tion of the ambiguity ratio, for a an a
tual 95% pre
isetagger when the probability of rightly tagging a 
orre
t/in
orre
t word in A is 0:99=0:81.Sin
e the ambiguity ratio for a given 
orpus is a �xed and easily 
omputable value, themain fa
tor a�e
ting the reported a

ura
y is the distribution of errors between the 
orre
tlyand the in
orre
tly tagged parts of the test 
orpus. For instan
e, table 5.4 shows how theevaluated pre
ision of our a
tual 95% pre
ise tagger 
hanges depending on how the probabilitythat the tagger 
orre
tly tags a word is distributed between words 
orre
tly/in
orre
tly tagged
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orpusA. The table is 
omputed taking as the ambiguity ratio for ambiguous wordsthe value 2:5 obtained from the WSJ 
orpus used in the experiments des
ribed in se
tion5.1. probability that tagger is OK probability that tagger is OKwhen A is OK (95% of A) when A is NOK (5% of A) reported a

ura
y0:950 0:950 90:42%0:955 0:855 91:21%0:960 0:760 92:00%0:965 0:665 92:79%0:970 0:570 93:58%0:975 0:475 94:38%0:980 0:380 95:17%0:985 0:285 95:96%0:990 0:190 96:75%0:995 0:095 97:54%1:000 0:000 98:33%Table 5.4: Reported a

ura
y, as a fun
tion of the probability of rightly tagging a 
orre
t/in
orre
tword in A, for an a
tual 95% pre
ise tagger when the 
orpus ambiguity ratio is 2:5.The �rst 
olumn presents the probability that the tagger 
orre
tly tags a word that has itsright tag in the test 
orpus. The se
ond 
olumn shows the probability that the tagger 
hoosesthe right tag for a word that was wrongly tagged in the test 
orpus. Both probabilities areset in su
h a way that the overall tagger a
tual performan
e keeps being 95%. Third 
olumnshows how the reported performan
e for our tagger would vary between 90:4% and 98:3%only depending on the tagger behaviour on words that are right or wrongly tagged in the test
orpus, that is, on to what extent the tagger makes the same errors than those found in the
orpus A.All this indi
ates that the reported a

ura
y of a tagger does not depend only on thetagset and the train and test 
orpora sizes, but also on the 
orpus itself, spe
ially on itsambiguity ratio and on how the tagger behaves over errors in the test 
orpus. That is, if thetrain 
orpus 
ontains the same kind of errors that the test 
orpus {whi
h is quite likely sin
ethey are usually di�erent parts of the same 
orpus{ the tagger will probably learn and makethose errors. This will 
ause the probability of assigning a right tag to a wrongly taggedword to be lower than for well-tagged words, and thus, the tagger performan
e will be over-evaluated, sin
e more errors will be 
omputed as right tags. If, on the 
ontrary, the taggermakes a similar proportion of errors in right and wrong tagged words, it will be drasti
allyunder-evaluated.This makes very diÆ
ult to 
ompare systems, sin
e they must be trained and evaluatedin the same 
orpora to be 
omparable. In addition, it makes 
lear that it is not possible {andnonsense{ a
hieving further results on POS-tagging using noisy test 
orpora and that eithererror-free test 
orpora are used, or the distortion on reported performan
e must be 
omputedusing the ambiguity ratio and the tagger error distribution over 
orre
t/in
orre
t words inthe test 
orpus.
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asesAlthough a systemati
 study of 
orpus errors has not been performed, we analyzed some 
asesin WSJ 
orpus in whi
h our tagger made a larger per
entage of errors. The main 
auses oferror were identi�ed: one of them was the above dis
ussed issue of mistagged words in thetest 
orpus, another, the noise in the train set, and �nally, semanti
 ambiguities that 
ouldnot be solved only with morphosynta
ti
 information. Some samples of ea
h follow.Unsolvable ambiguities in
lude the 
ase of semanti
 ambiguities whi
h 
an only be solvedwith domain, dis
ourse or 
ontext semanti
 information, su
h as the Noun{Adje
tive ambi-guity for word metal in the phrase the metal 
ontainer. It 
ould be an adje
tive, meaning themetalli
 
ontainer, or a noun, meaning the 
ontainer full of metal. This kind of errors arebeyond the s
ope of most 
urrent taggers, sin
e they usually deal only with synta
ti
 and/ormorphologi
al information. Nevertheless, our 
exible system is able to 
ope with multiple{sour
e knowledge, and 
onstraints relating semanti
 and morphologi
al features 
ould be usedto solve this kind of ambiguities in the same way they were used in se
tion 4.3.2 to performword sense disambiguation 
ombined with POS-tagging.Another error 
ase, mu
h more frequent, is the noise in the test and training 
orpora. Forinstan
e, the WSJ 
orpus used for the experiments des
ribed in se
tion 5.1 
ontains noise(mistagged words) that a�e
ts both the training and the test sets.The noise in the training set produ
es noisy {and so less pre
ise{ models. If the samelinguisti
 stru
ture is not 
oherently tagged in all its o

urren
es in the train 
orpus, themodel is not 
orre
tly estimated and that stru
ture will be wrongly tagged when the model isapplied. If the noise is strong enough it may 
ause a 
ertain linguisti
 stru
ture to be taggedin a most-likely basis when the model is supposed to do better than that.The noise in the test set produ
es a wrong estimation of a

ura
y, sin
e 
orre
t answersare 
omputed as wrong and vi
e-versa, as was dis
ussed above.Samples of some very frequent stru
tures that 
ontain a very high noise level are thefollowing:1. Verb parti
iple forms are sometimes tagged as VBN (verb-parti
iple) and in other sen-ten
es with no stru
tural di�eren
es they are tagged as JJ (adje
tive).� ... failing VBG to TO voluntarily RB submit VBthe DT requested VBN information NN ...� ... a DT large JJ sample NN of IN married JJ women NNSwith IN at IN least JJS one CD 
hild NN ...2. Another stru
ture not 
oherently tagged are noun 
hains when the nouns are ambiguousand 
an be also adje
tives. Although this may obey in many 
ases to semanti
 
on-siderations, the same senten
e with the same meaning appears tagged with all possible
ombinations.� ... Mr. NNP Hahn NNP , , the DT 62-year-old JJ 
hairman NN and CC
hief NN exe
utive JJ oÆ
er NN of IN Georgia-Pa
ifi
 NNP Corp. NNP ...� ... Burger NNP King NNP 's POS 
hief JJ exe
utive NN oÆ
er NN , ,Barry NNP Gibbons NNP , , stars VBZ in IN ads NNS saying VBG ...



5.2. SHALLOW PARSING 87� ... and CC Barrett NNP B. NNP Weekes NNP , , 
hairman NN , ,president NN and CC 
hief JJ exe
utive JJ oÆ
er NN . .� ... the DT 
ompany NN in
ludes VBZ Neil NNP Davenport NNP , ,47 CD , , president NN and CC 
hief NN exe
utive NN oÆ
er NN ; : ...Sin
e the o

urren
e of the in
oherently tagged stru
ture are not isolated 
ases {the num-ber of o

urren
es of the di�erent 
ombinations are the same order of magnitude{, the noisein these linguisti
 stru
tures 
auses its asso
iated model to be almost most-likely 
hoosing.With respe
t to the test 
orpus, a signi�
ant amount of o

urren
es of those noisy stru
tureswill distort the reported performan
e.5.2 Shallow ParsingThe experiments on shallow parsing, des
ribed in se
tion 4.3.1, 
onsisted of analyzing thesame test 
orpus using di�erent language models and di�erent analyzers. The used analyzerswere the 
onstraint{oriented CG-2 parser [Tapanainen 96℄ and the relaxation labelling algo-rithm. Two kinds of language models were employed: the statisti
ally 
olle
ted, based onbigrams (B) and trigrams (T) of shallow synta
ti
 tags, and the hand{written CG model withlinguisti
 motivation (C). We also used the hybrid models obtained merging them. Resultsare summarized in table 5.5. CG-2 parser Relaxation labellingpre
ision - re
all pre
ision - re
allC 90:8%� 99:7% 93:3%� 98:4%for
ed-C 95:0%� 95:0% 95:8%� 95:8%B � 87:4%� 88:0%T � 87:6%� 88:4%BT � 88:1%� 88:8%for
ed-BT � 88:5%� 88:5%BC � 96:0%� 97:0%TC � 95:9%� 97:0%BTC � 96:1%� 97:2%for
ed-BTC � 96:7%� 96:7%Table 5.5: Results for Shallow Parsing with di�erent language modelsThe 
on
lusions we 
an derive from the obtained results are:� Relaxation disambiguates more words than the CG-2 
onstraint based parser whenusing the same language model. This is due to the fa
t that the rules are applied in aweighted manner, while the CG-2 parser applies them stri
tly in an established priorityorder. This has the e�e
t of 
hoosing one among all the possible readings when a smallweight di�eren
e appears. This obviously 
auses a higher pre
ision but lower re
all forthe relaxation algorithm.For instan
e, if a 
ertain reading R1 was a�e
ted by a SELECT 
onstraint and anotherreading R2 for the same word was a�e
ted by two di�erent SELECT 
onstraints, sin
e
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ard any of the two readings, the word would be leftambiguous. On the other hand, when using relaxation applies, all 
onstraints are appliedin parallel. Then, the reading R2 would re
eive a higher support than R1, sin
e it hastwo positive 
ontributions (
onstraints) against only one 
ontribution for R1,. Thiswould have the e�e
t of 
hoosing R2 as the best 
andidate.� When for
ed1 to randomly 
hoose an unique reading for ea
h word among the remainingpossibilities, relaxation performs signi�
antly better {at a 99% 
on�den
e rate{ thanthe CG-2 parser. This is due to the fa
t that it had already disambiguated more words,so it is 
hoosing randomly in less 
ases than CG-2.It 
ould be argued that the CG model was written to be used in a CG-2 like orderedappli
ation, and that there is no point in applying it in parallel, Nevertheless, ourexperiments show that relaxation labelling results are signi�
antly better {in terms ofpre
ision{ than those of CG-2. Maybe this di�eren
e 
ould be in
reased if the 
onstraintmodel was developed under an order{free perspe
tive, more adequate to RL needs.These results proof the ability of relaxation labelling to a

urately apply linguisti
rules, as well as to perform NLP tasks di�erent than POS tagging.� When the statisti
al models are used alone, results are 
learly worse than the linguist-written model. This is very likely 
aused by the diÆ
ulty of the shallow parsing task,whi
h is not as easy to 
apture in a n-gram model as a simpler task su
h as part-of-spee
htagging.� The hybrid models produ
e less ambiguous output than the other models, that is, theyget a higher pre
ision and a lower re
all. The 
ombination of the linguisti
 plus statis-ti
al information has also the e�e
t of raising the performan
e when for
ed to randomdisambiguation. The for
ed-BTC results are signi�
antly better (99% 
on�den
e rate)than the for
ed-C. results, indi
ating that the both kinds of knowledge are 
orre
tly
ooperating when applied by the relaxation algorithm. That is, the BT model 
ontainsinformation that was not in the C model, and is a useful help to further disambiguatethe 
ases where the linguisti
 model has not enough information.5.3 Word Sense DisambiguationThe experiments performed on word sense disambiguation reported in se
tion 4.3.2 wereneither as extensive nor as intensive as those performed for the POS tagging or shallowparsing tasks. The main reason for that was the la
k of appropriate linguisti
 resour
es(sense tagged 
orpora, hand{written semanti
 
onstraints, . . . ) and the high labour 
ostne
essary to develop them. Nevertheless, we tried di�erent statisti
ally a
quired semanti

onstraints, as well as sele
tional restri
tions whi
h had been ma
hine{learned by [Ribas 95℄.We also used a few hand written sele
tional restri
tions for some very frequent verbs su
h asto give, to �nd or to hold.Although those experiments on applying relaxation labelling to word sense disambiguation
an be 
onsidered prospe
tive, the results obtained up to date enable us to draw the following
on
lusions:1The for
ed rows in table 5.5 shows the results when the algorithm was for
ed to 
omplete disambiguate allwords by randomly 
hoosing a reading.



5.3. WORD SENSE DISAMBIGUATION 89� The sense disambiguation experiments performed with a redu
ed set of hand-writtensele
tional restri
tions for a parti
ular verb show that relaxation labelling is able to dealwith multi-feature 
onstraints models and to perform several NLP tasks in parallel, inthis 
ase, POS tagging and WSD. Examples in se
tion 4.2 show how the semanti

onstraints 
an be useful not only for performing word sense disambiguation but alsofor assigning the right part-of-spee
h, and proof the ability of relaxation labelling fortaking advantage of 
ross-feature 
onstraints.� The experiments also point out that the 
onstraints ruling sense disambiguation mustbe very pre
ise and use synta
ti
 information as well as distinguish among verb senses,sin
e an important amount of the errors were due to an in
orre
t appli
ation of 
on-straints that were not spe
i�
 enough. Obtaining more general results for WSD wouldbe possible with a better WSD model.� The automati
ally a
quired sele
tional restri
tions for verb obje
ts used in the exper-iments should be more stri
tly applied, that is, applying the sele
tional restri
tion fora verb subje
t to the �rst name to the left of the verb, with few or no other warrantyof it being the real subje
t, 
an produ
e wrong sense sele
tions. This loose appli
ation
riterion was sele
ted due to the la
k of synta
ti
 information in the model.� The sele
tional restri
tions a
quired in [Ribas 95℄ are, in some 
ases, over-generalized.This, as the author indi
ates, is due to the la
k of negative examples, and to the noiseintrodu
ed by the verbs polysemy. This also leads to undesired appli
ations of sele
tionalrestri
tions..� SemCor is not a good test-ben
h for WSD, sin
e it provides a too small training 
orpus,and the synset level is too �ne{grained to perform WSD. Nevertheless, it is one of thefew publi
ly available sense{tagged 
orpora.� Other heuristi
s tested as possible sense 
onstraints, su
h as 
on
eptual distan
e andpairwise tops 
o-o

urren
e are not signi�
antly useful to help to disambiguate wordsenses, sin
e although they do 
orre
t some sense sele
tions, they also spoil a similaramount.The WSD task should be further addressed from 
onstraint-based language models andrelaxation labelling algorithm. Some dire
tions in whi
h the des
ribed problems 
an be fa
edare:� Use as senses a less �ne{grained set of 
ategories than WordNet synsets, but not as
oarse as WordNet tops or �le 
odes. That 
ould improve the performan
e not onlywhen using heuristi
s su
h as 
on
eptual distan
e or top 
o-o

urren
e heuristi
, butalso when using sele
tional restri
tions.� Another possibility in the same dire
tion is the use of the Top Ontology 
lasses orDomains de�ned and used in the EuroWordNet proje
t.� Con
eptual taxonomies di�erent than WordNet, su
h as those developed in the Mi
ro-Cosmos [Mahesh & Nirenburg 95℄ or Upper Model [Bateman et al. 95℄ proje
ts, 
ouldalso be taken into a

ount.



90 CHAPTER 5. COMPARATIVE ANALYSIS OF RESULTS� Use synta
ti
al information to properly apply sele
tional restri
tions. This 
ould bea
hieved 
ombining shallow parsing and WSD language models.� Use sele
tional restri
tions that 
onstraint an obje
t sense not only depending on theverb, but on the verb 
lass or sense. That would �lter out the noise derived from verbpolysemy.



Chapter 6Con
lusionsThis thesis exposes resear
h performed on applying a 
onstraint{based optimization algorithm{relaxation labelling{ to natural language pro
essing. The ultimate aim is �nding a 
exiblealgorithm able to 
ope with multi-feature language models, to integrate knowledge fromdi�erent sour
es, and to perform several NLP tasks, either separately or at the same time.We tested di�erent parameterizations of the algorithm to �nd the most appropriate oneto our needs. We then used the algorithm to perform di�erent NLP tasks: POS tagging,shallow parsing, and word sense disambiguation.In addition, we used hybrid language models to perform those tasks. The used modelsin
luded simple statisti
al information su
h as bigrams and trigrams, linguisti
ally motivatedhand{written 
onstraints, and automati
ally a
quired 
onstraints su
h as de
ision trees orsele
tional restri
tions.Those language models in
luded also 
onstraints on di�erent word features, and were usedto simultaneously solve more than one NLP task.6.1 Contributions6.1.1 Use of optimization te
hniques in NLPOne of the main points in this thesis is that optimization te
hniques in general and moreparti
ularly relaxation labelling are a good option to pro
ess natural language. The mainadvantage of relaxation labelling over other te
hniques is its 
onstraint{based domain de-s
ription, whi
h makes it very suitable for many NLP purposes.When using the relaxation labelling algorithm, the domain is des
ribed through 
onstraintsbetween variable values. In our 
ase, they are 
onstraints among word features su
h as part-of-spee
h tags, senses, lemmas, et
.We proposed and used an extension of the Constraint Grammar formalism, in whi
ha 
ompatibility value is assigned to ea
h 
onstraint, as a powerful and well-known way ofexpressing multi-feature 
ontext 
onstraints.With respe
t to the obje
tive fun
tion optimized by the algorithm, we tested di�erentsupport fun
tions {whi
h yield di�erent obje
tive fun
tions{ and 
hoose the most appropriate,the additive fun
tion, whi
h was the one that intuition re
ommended.We also tested a new support fun
tion, trying to simulate the sequen
e probability op-timized by HMM taggers, but results were not the same, sin
e relaxation performs a ve
tor91



92 CHAPTER 6. CONCLUSIONSoptimization, that is, the obje
tive fun
tion is a ve
tor, and thus, both algorithms are not
omparable in these terms.As a 
on
lusion, we 
an state that the optimization algorithm 
orre
tly performs the NLPtasks, when supplied the right 
onstraint{based language model.We showed that the model 
an perform as good as 
urrent systems at tasks su
h asPOS tagging or shallow parsing, and that its 
exibility enables it to integrate and use moresophisti
ated kinds of knowledge, yielding better results.6.1.2 Appli
ation of multi-feature modelsAnother main point in this thesis is that, for a higher a

ura
y, natural language tasks 
annot be solved independently, sin
e ea
h one needs information from the others. This is anidea whi
h is getting support from a growing number of resear
hers [Wilks & Stevenson 97,Ng 97, O
azer & T�ur 97, Rigau et al. 97, Zavrel & Daelemans 97℄.The presented system is able to deal with multi-feature models, that is, words are notrestri
ted to have an unique tag, but a set of features.The language model 
an in
lude 
onstraints on any word feature, and thus, express rela-tionships between one feature for one word and a di�erent one for a word in the 
ontext, forinstan
e stating that the POS tag for a given word depends on the semanti
s of the pre
edingword. The formalism that makes it possible is the Constraint Grammar formalism des
ribedby [Karlsson et al. 95℄, whi
h was adopted as a standard way of expressing 
ontext rules.We used multi{feature models to perform shallow parsing and word sense disambiguation,in the former 
ase the used 
onstraints in
luded information about word lemmas, synta
ti
fun
tion, POS, 
ase, verb mode, et
. In the later the used information were POS, senses, WN�le 
odes and lemmas.Multi{feature models were also used in POS tagging, although to a minor extent, using theword lemma in addition to part-of-spee
h tag either in 
onstraints derived from automati
allya
quired de
ision trees or in the 
ase of hand-written 
onstraints.The obtained results proof that the relaxation algorithm properly 
ombines di�erent kindsof information sin
e it is able to use 
onstraints relating, for instan
e, the lemma of a wordwith the POS tag of one neighbour word and the synta
ti
 fun
tion of a third one.Those 
onstraints are properly applied by the algorithm and the results are better thanwhen using only one{feature models. For instan
e, the appli
ation of a small set of handwritten 
onstraints that used as information not only the POS, but also the word lemmas,yielded a signi�
ant improvement when added to a bigram model {whi
h, obviously, usedonly POS information{.6.1.3 Appli
ation of statisti
al-linguisti
 hybrid modelsThe 
hoi
e to model language through a set of 
onstraints, ea
h of them asso
iated to a
ompatibility value, makes it possible to merge knowledge a
quired from multiple sour
es.The way to a
hieve this is 
onverting the di�erent sour
e knowledges to the 
ommon formalismof our language model.We su

essfully applied the relaxation algorithm, and showed that it is able to integrateknowledge obtained from di�erent sour
es provided it is expressed in the form of 
ontext
onstraints.



6.2. FURTHER WORK 93We used 
onstraints obtained from di�erent sour
es. For POS tagging, we 
ombined bi-gram and trigram 
onstraints with 
onstraints obtained translating ma
hine{learned de
isiontrees. We used also some sample hand{written 
onstraints.For shallow parsing, we used a hybrid model 
ontaining bigram and trigram informationas well as a linguist{written set of 
onstraints.For word sense disambiguation, we 
ombined POS bigram 
onstraints with sele
tionalrestri
tions on verb obje
ts both automati
ally a
quired [Ribas 95℄ and manually written.Other kinds of knowledge whi
h were also written in the form of 
ontext 
onstraints andadded to the model were the following: 
o-o

urren
es of pairs of WordNet top synsets, 
o-o

urren
es of pairs of WordNet �le 
odes and 
on
eptual distan
e between pairs of nounsenses.The 
on
lusions on this issue are that relaxation perfe
tly 
ombines the di�erent sour
esknowledge that it is supplied, and produ
es results whi
h are better than those that wouldbe obtained by any of the integrated sour
es alone, as for instan
e, in the POS tagging andshallow parsing experiments reported in 
hapter 4. Nevertheless, experiments in WSD pointout that the knowledge in
luded in the language must be very a

urate to produ
e goodresults, spe
ially in 
omplex tasks su
h as word sense disambiguation.6.1.4 Simultaneous resolution of NLP tasksDue to the multi-feature nature of 
onstraints, and to the parallel way in whi
h relaxationapplies them, the algorithm 
an sele
t simultaneously the most appropriate 
ombination forseveral word features, that its, it 
an solve di�erent NLP disambiguations at the same time.This is a
hieved by assigning to ea
h word not only a unique tag, but a reading, that is,a set of features. When a reading is sele
ted as the 
orre
t one, a set of features is beingsele
ted and thus the word is manifold disambiguated.Constraints 
an express restri
tions on any number of these features, from simple homo-geneous 
onstraints {su
h as a POS bigram{ to more 
omplex relationships. The sele
tedreading will be the one that has 
olle
ted more positive eviden
e in the total of its features.Modelling word features through readings has the advantage of disabling in
oherent 
om-binations, sin
e readings with, for instan
e, a verb POS and a noun sense are not 
onsideredas 
andidate readings.Two of the addressed tasks {shallow parsing and WSD{ were solved simultaneously withPOS tagging. Results showed that 
onstraints on one kind of knowledge 
an 
ollaborate todisambiguate the others. For instan
e, in the WSD experiment des
ribed in 
hapter 4, thehand-written 
onstraints for WSD helped in 
orre
ting some POS tag, sin
e the sele
tion ofa noun sense for
ed the POS tag to be 
hanged to noun.6.2 Further WorkThe resear
h lines opened by this work 
an be divided in two main groups: those fo
used onimproving the used 
onstraint language models through both new automati
 model a
quisitionalgorithms and linguisti
 manual model development, and those aiming to better exploit therelaxation algorithms when applied to NLP tasks, in
luding noise analysis, speeding up thealgorithm and more a

urate applying the 
onstraint models.



94 CHAPTER 6. CONCLUSIONSOn the �rst group, better language models have to be developed, both through the use ofautomati
 knowledge a
quisition te
hniques and through manual development of the models.� The future models will have to in
lude 
onstraints on either a single disambiguationtask or several of them, use single and multi{feature 
onstraints, obtained from di�erentautomati
 or manual sour
es.� For manual 
onstraints, an automati
 pro
edure for 
omputing 
ompatibility valuesmust be developed. Maximum Entropy seems to be a very promising approa
h for thisissue.� The model for word sense disambiguation should be extended, probably manually, andwill have to in
lude synta
ti
 information to make a good use of sele
tional restri
tions.This 
ould be a
hieved 
ombining the shallow parsing model with the WSD model.� The WSD model will also have to use a sense 
odi�
ation of an appropriate granularity.This 
ould be a
hieved through the use of the Top Ontology Classes de�ned and usedin the EuroWordNet proje
t.� To be able to automati
ally derive a

urate language models, the training 
orpus mustbe as noiseless as possible. Thus, debugging te
hniques should be applied on available
orpora in order to minimize their error rate and to establish a 
oherent evaluationmethod and a upper bound for the a
hievable a

ura
y.A possible te
hnique to solve this issue 
ould be the 
omparison of the errors made bydi�erent disambiguators on the same test 
orpus and the study of the rate of agreementand disagreement among them.� In the same dire
tion, the distortion in reported performan
e introdu
ed by the noisein the test 
orpus must be further studied, to �nd out whether there is an easy way toestimate it, or on the 
ontrary, the only reliable pro
edure to evaluate a NLP system isusing noiseless test 
orpora.On improving the algorithm performan
e, several paths are still to be explored:� We plan to further test dis
rete relaxation, whi
h, as des
ribed in se
tion 3.1.2, isequivalent to simulated annealing, and 
ompare it with 
ontinuous relaxation.� Studies on whi
h is the most appropriate normalization fa
tor for support values mustalso be performed, sin
e a 
orre
t 
hoi
e may shorten the number of ne
essary iterations,improve performan
e, and 
on�rm the assumption that 
onvergen
e is the right stopping
riterion to 
hoose.� We also plan to investigate whether the fa
t that relaxation performs slightly worsethan the HMM tagger when both of them use the same bigram model is 
aused by ahigher sensitivity to noise {and thus, it 
an be solved using better training sets{ or elseits an intrinsi
 feature of the algorithms.� On improving the algorithm eÆ
ien
y, a possible future resear
h trend is the 
ompilationof the 
ontext 
onstraints into a �nite state transdu
er to speed up their appli
ation[Ro
he & S
habes 95, Morawietz & Cornell 97, Tzoukermann & Radev 97℄.



6.2. FURTHER WORK 95From a more general point of view, we plan to develop language models as 
omplete aspossible for Spanish and Catalan, and use the system as a basi
 pro
ess in a wider NLP system.The system has already been integrated it in a NLP environment aimed to perform informationextra
tion, as a part of the ITEM proje
t funded by Spanish Resear
h Department (CYCIT)TIC96-1243-C03-02.
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Appendix ATagset Des
riptionsThis appendix 
ontains the tagsets for the Spanish Novel 
orpus, and the WSJ 
orpus, whi
hwere used in the experiments on POS tagging des
ribed in 
hapter 4.A.1 WSJ 
orpus tagsetTag Des
ription Tag Des
riptionCC 
oordinating 
onjun
tion TO in�nitive marker toCD 
ardinal number UH interje
tionDT determiner VB verb, base formEX exsitential there VBD verb, past tenseFW foreign word VBG verb, gerund / present parti
ipleIN preposition / subordinating 
onj. VBN verb, past parti
ipleJJ adje
tive VBP verb, non 3rd person singular presentJJR adje
tive, 
omparative VBZ verb, 3rd person singular presentJJS adje
tive, superlative WDT wh-determinerLS list item marker WP wh-pronounMD modal WP$ possessive wh-pronounNN noun, singular or mass WRB wh-adverbNNS noun, plural # pound signNP proper noun, singular $ dollar signNPS proper noun, plural " straight double quotePDT predeterminer \ left open double quotePOS possessive ending " right 
lose double quotePP personal pronoun ` left open single quotePP$ possessive pronoun ' right 
lose single quoteRB adverb ( left bra
ketRBR adverb, 
omparative ) right bra
ketRBS adverb, superlative , 
ommaRP parti
le . senten
e �nal pun
tuationSYM symbol : 
olon, semi-
olon
113



114 APPENDIX A. TAGSET DESCRIPTIONSA.2 Spanish Novel 
orpus tagsetTag Des
ription Tag Des
riptionA adje
tive VV verb personal formCC 
oordinating 
onjun
tion VP verb personal form + pronounCS subordinating 
onjun
tion VS verb personal form + seCA other 
onjun
tions VEV ser personal formD adverb VEP ser personal form + pronounRA preposition+arti
le 
ontra
ted VHV haber personal formRP preposition VHP haber personal form + pronounTD demonstrative determiner VHS haber personal form + seTP possessive determiner IV verb in�nitiveTQ de�nite quantifyer determiner IP verb in�nitive + pronounTI inde�nite quantifyer determiner IS verb in�nitive + seJ arti
le IEV ser in�nitiveM number IEP ser in�nitive + pronounN noun IHV haber in�nitivePD demonstrative pronoun IHP haber in�nitive + pronounPN interrogative pronoun IHS haber in�nitive + sePL lo
ative pronoun GV verb gerundPO possessive pronoun GP verb gerund + pronounPQ de�nite quantifyer pronoun GS verb gerund + sePI inde�nite quantifyer pronoun GEV ser gerundPR relative pronoun GEP ser gerund + pronounPS personal-subje
t pronoun GHV haber gerundPP personal pronoun GHP haber gerund + pronounPA other pronouns GHS haber gerund + seW proper noun UV verb parti
ipleX se UP verb parti
iple + pronounY interje
tion US verb parti
iple + seZ< pun
tuation < UEV ser parti
ipleZ! pun
tuation ! UEP ser parti
iple + pronounZ> pun
tuation > UHV haber parti
ipleZ? pun
tuation ? UHP haber parti
iple + pronounZ, pun
tuation , UHS haber parti
iple + seZ. pun
tuation .Z; pun
tuation ;Z- pun
tuation -ZX other pun
tuations



A.3. SUSANNE CORPUS TAGSET 115A.3 Susanne Corpus tagsetThe 
omplete Susanne 
orpus tagset 
onsists of over 350 tags whi
h distinguish gender, num-ber, person, tense and many other morphosynta
ti
 features. A detailes des
ription 
an befound in [Sampson 95℄.The tagset used in the experiments reported in se
tion 4.1 used the redu
ed version of thetagset whi
h is listed below. The interested reader 
an �nd the detailed des
ription for ea
htag in the above referen
ed book by [Sampson 95℄
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Appendix BSample ConstraintsThis appendix 
ontains some sample 
onstraints whi
h were used were used in the experimentson POS tagging and on the Shallow Parsing des
ribed in 
hapter4. Some of the 
onstraintswere statisti
ally a
quired in the form of bigrams and trigrams, some others were automat-i
ally extra
ted using the de
ision{trees learning algorithm des
ribed in se
tion 3.3.2.2, and�nally, some of them where hand written.B.1 Sample statisti
ally a
quired 
onstraintsThe statisti
ally a
quired 
onstraints are binary 
onstraints, 
orresponding to bigrams, andternary 
onstraints, whi
h 
orrespond to trigram information. Some sample 
onstraints ob-tained on
e the n-gram information has been translated into the extended Constraint Gram-mar formalism are the following:For instan
e, some binary 
onstraints derived from bigram o

urren
es are the following:First, a 
onstraint that states a high 
ompatibility for a verb tag (VB) when pre
eded bya modal (MD).4.846532 (VB)(-1 (MD));The next 
onstraint states a positive 
ompatibility for a determiner tag (DT) when fol-lowed by a noun (NN).1.760843 (DT)(1 (NN));The next 
onstraints state a large in
ompatibility for a determiner tag (DT) when followedby a verb (VB), and vi
e-versa, that is, for a verb tag (VB) when pre
eded by a determiner(DT). -6.776550 (DT) -6.776550 (VB)(1 (VB)); (-1 (DT));Trigram o

urren
es produ
e ternary 
onstraints su
h as the samples below.The �rst 
onstraint expresses that a determiner tag (DT) is quite 
ompatible with a right
ontext 
onsisting of an adje
tive (JJ) in the �rst right position and a noun (NN) in these
ond. 117



118 APPENDIX B. SAMPLE CONSTRAINTS2.352891 (DT)(1 (JJ))(2 (NN));The se
ond sample ternary 
onstraint states that a parti
iple tag (VBN) is rather in
om-patible with an adje
tive (JJ) to its left and a determiner (DT) to its right.-5.682948 (VBN)(-1 (JJ))(1 (DT));B.2 Sample de
ision{tree learned 
onstraintsThe sample 
onstraints presented in this se
tion were automati
ally a
quired by the de
isiontree learning algorithm [M�arquez & Padr�o 97℄ des
ribed in se
tion 3.3.2.2. They have nolinguisti
 meaning, and involve a 
ontext larger than the immediate one or two words. The
ontext 
onsidered in these 
onstraints 
onsists of two words to the right, three to the leftand the word form of the fo
us word.For instan
e, the following 
onstraint that the determiner (DT) tag for the word all israther in
ompatible with a 
ontext 
onsisting of an adverb (RB) in the �rst right positionand a word with any of the detailed tags in the se
ond left position.-2.82059 (DT "all")(-2 (WDT) OR (VBD) OR (RB) OR (JJ) OR (POS) OR (MD) OR (CC))(1 (RB));The next 
onstraint states the 
ompatibility of an adje
tive (JJ) tag for a word that 
anbe also parti
iple (VBN) with a 
ontext formed by the spe
i�ed tags in the two left positionsand in the �rst right word.1.48853 (JJ)(0 (VBN))(-1 (VB) OR (IN) OR (DT) OR (<,>))(-2 (VBZ))(1 (VBP) OR (NNP) OR (NNS) OR (NN) OR (JJ) OR (MD));The next two 
onstraints are in fa
t the same, and state that a JJS tag for the wordsearliest or least is slightly 
ompatible with a �rst left word with any of the detailed tags.0.11497 ("earliest" JJS)(1 (VBN) OR (RB) OR (JJ) OR (TO) OR (<(>));0.11497 ("least" JJS)(1 (VBN) OR (RB) OR (JJ) OR (TO) OR (<(>));
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onstraintsThe third kind of 
onstraints are those whi
h were manually written. They have some {simple{ linguisti
 meaning. Their 
ompatibility values are manually assigned and thus arean arbitrary value. Nevertheless, this value is 
hosen to be approximately the same thanthe highest value obtained for any automati
ally a
quired 
onstraint (either statisti
al orlearned).B.3.1 POS tagging 
onstraintsThe following sample 
onstraint were manually written as a part of a small set aiming bothto 
over the most frequent errors 
ommitted by the statisti
al models and to test the abilityof the algorithm to deal with di�erent sour
e information. Thus, although they have somelinguisti
 meaning, they are limited and do not 
over all possible 
ases.For instan
e, the �rst 
onstraint states a high 
ompatibility for a parti
iple (VBN) tagwith an auxiliary verb form (VAUX) tagged as a verb1, provided that there is not any otherparti
iple nor any phrase break item (preposition, pun
tuation or adje
tive) in between.10 (VBN)(*-1 VAUX + (VBD) OR (VB) OR (VBP) OR (VBZ) OR (VBN)BARRIER (VBN) OR (IN) OR (<,>) OR (<:>) OR (JJ) OR (JJS) OR (JJR));The se
ond sample 
onstraint states a high 
ompatibility for a noun (NN) tag with aleft 
ontext 
onsisting of a determiner {with no other nouns in between{ and a right 
ontext
onsisting of no noun tags before the �rst noun phrase 
hange (pun
tuation or determiner).10 (NN)(*-1 (DT) BARRIER (NN) OR (NNS))(*1 (DT) OR (<.>) OR (<,>) OR (<:>) BARRIER (NN) OR (NNS)));The four following 
onstraint deal with 
omparative 
onstru
ts of the form as <adje
tive>as and as <adverb> as. In the WSJ 
orpus, the �rst as is tagged as RB and the se
ond asIN. These 
onstraints state high 
ompatibility for the right 
hoi
e and high in
ompatibilityfor the wrong one in ea
h 
ase.10 ("as" RB) -10 ("as" RB)(1 (JJ) OR (RB)) (-1 (JJ) OR (RB))(2 ("as")); (-2 ("as"));-10 ("as" IN) 10 ("as" IN)(1 (JJ) OR (RB)) (-1 (JJ) OR (RB))(2 ("as")); (-2 ("as"));B.3.2 Shallow parsing 
onstraintsThe 
onstraints used in the shallow parsing experiments were hand written by a linguist.Although they are not an exhaustive model, they have a reasonable 
overage, and perform1VAUX is previously de�ned in the grammar as any possible word form for verbs to be or to have. Theverb tags are required to avoid applying the 
onstraint in 
ases su
h as nominal uses of being.



120 APPENDIX B. SAMPLE CONSTRAINTSthe task a

urately. Details about grammar development 
an be found in se
tion 4.3.1 andin [Voutilainen & Padr�o 97℄.Some sample hand written 
onstraints for the shallow parsing task are the following. The�rst rule removes the premodi�er tag �>N from an ambiguous reading if somewhere to theright (*1) there is an unambiguous (C) o

urren
e of a member of the set <<< (senten
eboundary symbols) or the verb tag �V or the subordinating 
onjun
tion tag �CS, and thereare no intervening tags for nominal heads (�NH).REMOVE (�>N)(*1C <<< OR (�V) OR (�CS) BARRIER (�NH));Next is a partial rule about 
oordination, whi
h removes the premodi�er tag if all three
ontext-
onditions are satis�ed: (i) the word to be disambiguated (0) is not a determiner,numeral or adje
tive, (ii) the �rst word to the right (1) is an unambiguous 
oordinating
onjun
tion, and (iii) the se
ond word to the right is an unambiguous determiner.REMOVE (�>N)(NOT 0 (DET) OR (NUM) OR (A))(1C (CC))(2C (DET));


