Unsupervised Relation Extraction by Massive Clustering

Edgar Gonzàlez Jordi Turmo

TALP Research Center

7 December 2009
Thousands of people were in the streets and in the basilica to pay tribute. Former president Jimmy Carter represented the United States.
Relation Detection

Thousands of people *were in the streets* and *in the basilica* to pay tribute. *Former president Jimmy Carter represented the United States.*

Entities
Thousands of people were in the streets and in the basilica to pay tribute. Former president Jimmy Carter represented the United States.

people \leftrightarrow streets
Thousands of **people** were in **the streets** and in **the basilica** to pay **tribute**.

Former president Jimmy Carter represented the United States.

```
people ←→ basilica
```
Thousands of people were in the streets and in the basilica to pay tribute. Former president Jimmy Carter represented the United States.

Jimmy Carter \leftrightarrow United States
Machine Learning for Information Extraction

- Relation Detection \subset Information Extraction
 - Uses specific linguistic knowledge
 - Adaptation requires costly human effort
Machine Learning for Information Extraction

- Relation Detection ⊂ Information Extraction
 - Uses specific linguistic knowledge
 - Adaptation requires costly human effort
- Machine Learning → Adaptative IE
 - Supervised approaches
 - Weakly supervised approaches
Machine Learning for Information Extraction

- Relation Detection ⊂ Information Extraction
 - Uses specific linguistic knowledge
 - Adaptation requires costly human effort
- Machine Learning → Adaptative IE
 - Supervised approaches
 - Weakly supervised approaches
 - Supervision → Bias
Machine Learning for Information Extraction

- Relation Detection ⊂ Information Extraction
 - Uses specific linguistic knowledge
 - Adaptation requires costly human effort
- Machine Learning → Adaptative IE
 - Supervised approaches
 - Weakly supervised approaches
 - Supervision → Bias
 - Unsupervised approaches
 - Avoid biases
Machine Learning for Information Extraction

- Relation Detection ⊂ Information Extraction
 - Uses specific linguistic knowledge
 - Adaptation requires costly human effort
- Machine Learning \rightarrow Adaptative IE
 - Supervised approaches
 - Weakly supervised approaches
 - Supervision \rightarrow Bias
 - Unsupervised approaches
 - Avoid biases
 - Use clustering techniques
Our Proposal

- New unsupervised approach to learning for relation extraction
 - Using probabilistic clustering models
- Evaluation in ACE Relation Mention Detection task
 - Popular evaluation framework
Approach
Overview

Sentence \(x = \langle E_1, E_2 \rangle \) Instance Related / Unrelated Classifier Related / Unrelated
Overview

Approach

Scoring Filtering

\[x = \langle E_1, E_2 \rangle \]

Instance

Score

Related / Unrelated

González & Turmo (TALP) Unsupervised Relation Extraction 7 December 2009 6 / 20
Assumptions

- Scoring:
 - Clustering \rightarrow point of view
 - Cluster \rightarrow shared sets of features \rightarrow relatedness
 - Cluster \rightarrow reliability \rightarrow score
Scoring:

- Clustering → point of view
- Cluster → shared sets of features → relatedness
- Cluster → reliability → score
- \sum clusterings with scored clusters ⇒ Scorer
Assumptions

- **Scoring:**
 - Clustering \rightarrow point of view
 - Cluster \rightarrow shared sets of features \rightarrow relatedness
 - Cluster \rightarrow reliability \rightarrow score
 - \sum clusterings with scored clusters \Rightarrow Scorer

- **Filtering:**
 - Unsupervised learning \rightarrow \exists non-related instances
 - Highly scored instances \rightarrow related pairs
Assumptions

- **Scoring:**
 - Clustering \rightarrow point of view
 - Cluster \rightarrow shared sets of features \rightarrow relatedness
 - Cluster \rightarrow reliability \rightarrow score
 - \sum clusterings with scored clusters \Rightarrow Scorer

- **Filtering:**
 - Unsupervised learning \rightarrow \exists non-related instances
 - Highly scored instances \rightarrow related pairs
 - Threshold value \Rightarrow Filterer
Scorer Learning
Scorer Learning

- Corpus Pre-Processing
 - Tokenization, POS-Tagging, NERC
Scorer Learning

- Corpus Pre-Processing
 - Tokenization, POS-Tagging, NERC
- Instance Generation
 - $\mathcal{X} = \{x_i\}$
 - Pairs of entities co-occurring within a sentence
 - Distance threshold
 - Generation of binary features
 - Context window
 - Pattern-based $\rightarrow \text{dist}_d$, left_d...
 - Frequency threshold
Scorer Learning

- Instance Clustering
 - \(p(c_{pq}|x_i; \Theta_p) \)
 - Mixture of Bernoulli distributions
 - Expectation-Maximization algorithm
 - Massive repeated randomization \(\rightarrow \) Robustness
Scorer Learning

- **Instance Clustering**
 - \(p(c_{pq}|x; \Theta_p) \)
 - Mixture of Bernoulli distributions
 - Expectation-Maximization algorithm
 - Massive repeated randomization \(\rightarrow\) Robustness

- **Cluster Scoring**
 - \(z(c_{pq}) \)
 - Cluster Measures
 - Size
 - Homogeneousness \(\rightarrow\) Radius
Scorer Learning

- **Instance Clustering**
 - \(p(c_{pq}|x_i; \Theta_p) \)
 - Mixture of Bernoulli distributions
 - Expectation-Maximization algorithm
 - Massive repeated randomization → Robustness

- **Cluster Scoring**
 - \(z(c_{pq}) \)
 - Cluster Measures
 - Size (Normalized by number of non-empty clusters in clustering)
 - Homogeneousness → Radius
Scorer Learning

- **Instance Clustering**
 - $p(c_{pq}|x_i; \Theta_p)$
 - Mixture of Bernoulli distributions
 - Expectation-Maximization algorithm
 - Massive repeated randomization \rightarrow Robustness

- **Cluster Scoring**
 - $z(c_{pq})$
 - Cluster Measures
 - Size (Normalized by number of non-empty clusters in clustering)
 - Homogeneousness \rightarrow Radius

- **Formulae**
 - NSiz, Rad, NDns
Scoring

Corpus

Context

Features

Score

Models + Scores

Posterior Probabilities

\[s(x_i) = \sum \hat{\Theta} p_k p_{\sum q=1} p(c_{pq} | x_i) \cdot z(c_{pq}) \]

González & Turmo (TALP) Unsupervised Relation Extraction 7 December 2009 11 / 20
Scoring

\[s(x_i) = \sum_{\hat{\Theta}_p} \sum_{q=1}^{k_p} p(c_{pq} | x_i) \cdot z(c_{pq}) \]
Filterer Learning

- Determination of Threshold Score
 - s_{th} such that $x_i \in R^+ \iff s(x_i) \geq s_{th}$
Filterer Learning

- Determination of Threshold Score
 - s_{th} such that $x_i \in R^+ \leftrightarrow s(x_i) \geq s_{th}$
 - Heuristic-based
 1. Obtain scores of instances in training corpus
 2. Sort instances by score, obtaining a decreasing convex function
 3. Find a cut-off point
Filterer Learning

GPE-LOC - NSiz

Score

Instances

González & Turmo (TALP) Unsupervised Relation Extraction 7 December 2009 13 / 20
Approach

Filterer Learning

GPE-LOC - NSiz

Instances
Score
0.0
0.2
0.4
0.6
0.8
1.0
Evaluation
Evaluation Framework

- Corpora
 - AQUAINT (APW 2000) → 29Mw
 - ACE 2003–2008 → 500kw, 98k entities, 18k relations

- Task
 - Relation Mention Detection
 - Recall, Precision, F1

- Approaches
 - GRAMS-Ub
 - Single
 - Mass
Average Results

<table>
<thead>
<tr>
<th>Method</th>
<th>Size</th>
<th>Recall</th>
<th>Precision</th>
<th>F1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grams-Ub</td>
<td>-</td>
<td>43.5</td>
<td>65.6</td>
<td>51.0</td>
</tr>
<tr>
<td>Single</td>
<td>NSiz</td>
<td>52.8</td>
<td>54.3</td>
<td>52.3</td>
</tr>
<tr>
<td>Single</td>
<td>Rad</td>
<td>52.1</td>
<td>54.2</td>
<td>50.3</td>
</tr>
<tr>
<td>Single</td>
<td>NDNs</td>
<td>53.4</td>
<td>54.1</td>
<td>52.5</td>
</tr>
<tr>
<td>Mass</td>
<td>NSiz</td>
<td>59.5</td>
<td>53.7</td>
<td>55.8</td>
</tr>
<tr>
<td>Mass</td>
<td>Rad</td>
<td>62.8</td>
<td>51.7</td>
<td>56.0</td>
</tr>
<tr>
<td>Mass</td>
<td>NDNs</td>
<td>59.1</td>
<td>54.2</td>
<td>55.9</td>
</tr>
</tbody>
</table>
Average Results

<table>
<thead>
<tr>
<th></th>
<th>Rec</th>
<th>Prc</th>
<th>F1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grams-Ub</td>
<td>-</td>
<td>43.5</td>
<td>65.6</td>
</tr>
<tr>
<td>Single</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSiz</td>
<td>52.8</td>
<td>54.3</td>
<td>52.3</td>
</tr>
<tr>
<td>Rad</td>
<td>52.1</td>
<td>54.2</td>
<td>50.3</td>
</tr>
<tr>
<td>NDns</td>
<td>53.4</td>
<td>54.1</td>
<td>52.5</td>
</tr>
<tr>
<td>Mass</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSiz</td>
<td>59.5</td>
<td>53.7</td>
<td>55.8</td>
</tr>
<tr>
<td>Rad</td>
<td>62.8</td>
<td>51.7</td>
<td>56.0</td>
</tr>
<tr>
<td>NDns</td>
<td>59.1</td>
<td>54.2</td>
<td>55.9</td>
</tr>
</tbody>
</table>
Average Results

<table>
<thead>
<tr>
<th></th>
<th>Rec</th>
<th>Prc</th>
<th>F1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grams-Ub</td>
<td>43.5</td>
<td>65.6</td>
<td>51.0</td>
</tr>
<tr>
<td>Single</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSiz</td>
<td>52.8</td>
<td>54.3</td>
<td>52.3</td>
</tr>
<tr>
<td>Rad</td>
<td>52.1</td>
<td>54.2</td>
<td>50.3</td>
</tr>
<tr>
<td>NDns</td>
<td>53.4</td>
<td>54.1</td>
<td>52.5</td>
</tr>
<tr>
<td>Mass</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSiz</td>
<td>59.5</td>
<td>53.7</td>
<td>55.8</td>
</tr>
<tr>
<td>Rad</td>
<td>62.8</td>
<td>51.7</td>
<td>56.0</td>
</tr>
<tr>
<td>NDns</td>
<td>59.1</td>
<td>54.2</td>
<td>55.9</td>
</tr>
</tbody>
</table>
Filtering

GPE-Loc - NSiz

![Graph showing GPE-Loc - NSiz](image-url)
Filtering

GPE-Loc - NSiz

Score / F1 vs. Instances

Train, Test, F1
Filtering

GPE-LOC - NSIZ

Score / F1

Instances

González & Turmo (TALP) Unsupervised Relation Extraction 7 December 2009 17 / 20
Conclusions
Conclusions

- New unsupervised approach to learning for relation extraction
 - Using probabilistic clustering models
- Evaluation in ACE Relation Mention Detection task
 - Popular evaluation framework
Conclusions

- New unsupervised approach to learning for relation extraction
 - Using probabilistic clustering models
- Evaluation in ACE Relation Mention Detection task
 - Popular evaluation framework
 - 4-point F1 increase above state-of-the-art upper bound
 - Inclusion of richer features \rightarrow Greater flexibility
 - Benefits of massive combination
 - Robustness to cluster score function
Thank you!