
SVMTool: A general POS tagger generator based on Support Vector Machines

Jesús Giménez and Lluı́s Màrquez

TALP Research Center, LSI Department
Universitat Politècnica de Catalunya

Jordi Girona Salgado 1–3, E-08034, Barcelona�
jgimenez,lluism � @talp.upc.es

Abstract
This paper presents the SVMTool, a simple, flexible, effective and efficient part–of–speech tagger based on Support Vector Machines.
The SVMTool offers a fairly good balance among these properties which make it really practical for current NLP applications. It is
very easy to use and easily configurable so as to perfectly fit the needs of a number of different applications. Results are also very
competitive, achieving an accuracy of 97.16% for English on the Wall Street Journal corpus. It has been also successfully applied to
Spanish exhibiting a similar performance. A first release of the SVMTool Perl prototype is now freely available for public use. A most
efficient C++ version is coming very soon.

1. Introduction
Most NLP applications demand at some step some part–

of–speech (POS) information, usually at initial stages prior
to elaborate further complex data analyses. Generally,
POS-tagging is required to be as accurate as possible, and
as efficient as possible. But, certainly, there is a trade-off
between this two desirable properties. This is so because
obtaining a higher accuracy relies on processing more and
more information, digging deeper and deeper into it. How-
ever, sometimes, depending on the kind of application, a
loss in efficiency may be acceptable in order to obtain more
precise results. Or the other way around, a slight loss in
accuracy may be tolerated if that causes the POS-tagger to
run faster.

Moreover, some languages have a richer morphology
than others, requiring the POS-tagger to have into acount a
bigger set of feature patterns. Also the tagset size and am-
biguity rate may vary from language to language. Besides,
if few data are available for training, the proportion of un-
known words may be huge. Sometimes, morphological an-
alyzers could be utilized to reduce the degree of ambiguity
when facing unknown words. Thus, a POS-tagger should
be flexible with respect to the amount of information uti-
lized and context shape.

Another very interesting property for POS-taggers is
their portability. Multilingual information is a key ingredi-
ent in NLP tasks such as Machine Translation, Information
Retrieval, Information Extraction, Question Answering and
Word Sense Disambiguation. Therefore, having a tagger
that works equally well for several languages is crucial for
the system robustness.

Besides, quite often for some languages, but also in gen-
eral, lexical resources are hard to obtain. Therefore, ideally
a POS-tagger should be capable for learning with few (or
even none) annotated data.

The SVMTool is intended to comply with all the require-
ments of modern NLP technology, by combining simplic-
ity, flexibility, robustness, portability and efficiency with
state–of–the–art accuracy. This is achieved by working in
the Support Vector Machines (SVM) learning framework
(Cristianini and Shawe-Taylor, 2000), and by offering NLP
researchers a highly customizable POS-tagger generator.

The Perl version 1.0 of the SVMTool may be now freely
downloaded at http://www.lsi.upc.es/˜nlp/
SVMTool/1.

The properties the SVMTool is intended to exhibit are:

Simplicty The SVMTool is easy to configure and to train.
The learning is controlled by means of a very simple
configuration file. There are very few parameters to
tune. And the tagger itself is very easy to use, accept-
ing standard input and output pipelining. Embedded
usage is also supplied by means of the SVMTool API.

Flexibility The size and shape of the feature context can be
adjusted. Also, rich features can be defined, including
word and POS n-grams as well as ambiguity classes
and “may be’s”, apart from lexicalized features for un-
known words and sentence general information. The
behaviour at tagging time is also very flexible, allow-
ing different strategies.

Robustness The overfitting problem is well addressed via
the tunning of the C parameter in the soft margin ver-
sion of the SVM learning algorithm. Also, a sentence-
level analysis may be performed in order to maximize
the sentence score. And, for unknown words not to
punish so severely on the system effectiveness, several
strategies have been implemented and tested.

Portability The SVMTool is language independent. It
has been successfully applied to English and Span-
ish without a priori knowledge other than a supervised
corpus. Moreover, thinking of languages for which la-
beled data is a scarce resource, the SVMTool also may
learn from unsupervised data based on the role of non-
ambiguous words (Mihalcea, 2003) with the only ad-
ditional help of a morpho-syntactic dictionary.

Accuracy Compared to state–of–the–art POS taggers re-
ported up to date, it exhibits a very competitive ac-
curacy (over 97.1% for English on the WSJ corpus).

1Of course, comments and feedback from all the NLP commu-
nity members will be very welcome



Clearly, rich sets of features allow to model very pre-
cisely most of the information involved. Also the
learning paradigm, SVM, is very suitable for work-
ing accurately and efficiently with high dimensionality
feature spaces.

Efficiency Performance at tagging time depends on the
feature set size and the tagging scheme selected.
For the default (one-pass left-to-right greedy) tagging
scheme, the current Perl prototype exhibits a tagging
speed of 1,500 words/second. This has been achieved
by working in the primal formulation of SVM. The use
of linear kernels causes the tagger to perform more ef-
ficiently both at tagging and learning time, but forces
the user to define a richer feature space. However, the
learning time remains linear with respect to the num-
ber of training examples.

A more detailed description of the SVMTool approach
to POS-tagging can be found in (Giménez and Màrquez,
2003).

2. The SVMT Tool
The SVMTool software package consists of three main

components, namely the learner (SVMTlearn), the tagger
(SVMTagger) and the evaluator (SVMTeval), which are de-
scribed below.

Previous to the tagging, SVM models (weight vectors
and biases) are learned from a training corpus using the
SVMTlearn component. Different models are learned for
the different strategies. Then, at tagging time, using the
SVMTagger component, one may choose the tagging strat-
egy that is most suitable for the purpose of the tagging.
Finally, given a correctly annotated corpus, and the cor-
responding SVMTool predicted annotation, the SVMTeval
component displays tagging results.

2.1. SVMTlearn

Given a training set of examples (either annotated or
unannotated), it is responsible for the training of a set
of SVM classifiers. So as to do that, it makes use of
SVM–light2, an implementation of Vapnik’s SVMs in C,
developed by Thorsten Joachims (Joachims, 1999).

Options. SVMTlearn behaviour is easily adjusted
through a configuration file. These are the currently avail-
able options:

� Sliding window: The size of the sliding window for
feature extraction can be adjusted. Also, the core posi-
tion in which the word to disambiguate is to be located
may be selected. By default, window size is 5 and the
core position is 2, starting at 0.

� Feature set: Three different kinds of feature types can
be collected from the sliding window:

– word features: Word form n-grams. Usually un-
igrams, bigrams and trigrams suffice. Also, the

2The SVM
�������	�

software is freely available (for scientific use)
at the following URL: http://svmlight.joachims.org

sentence last word, which corresponds to a punc-
tuation mark (’.’, ’?’, ’!’), is important.

– POS features: Annotated parts–of–speech and
ambiguity classes n-grams, and “may be’s”. As
for words, considering unigrams, bigrams and tri-
grams is enough. The ambiguity class for a cer-
tain word determines which POS are possible. A
“may be” states, for a certain word, that certain
POS may be possible, i.e. it belongs to the word
ambiguity class.

– affix and orthographic features: including pre-
fixes and suffixes, capitalization, hyphenization,
and similar information related to a word form.
They are only used to represent unknown words.

Table 1 shows the rich feature set used in experiments.

word features 
���	��
�������
�������
�����
�������
�������
���
POS features �������������� �!�������������"���#���"���	���"��
ambiguity classes $	���%$�����$	����$�
may be’s &'�	��&(�#��&)�	��&'
word bigrams *+
����	��
����-,.�/*+
0���#��
����-,.�-*+
����#��
1�2,

*+
1�	��
����-,.�-*+
�������
����2,
POS bigrams *��3���	�������-,.�-*���������$	���%,.�-*4$	���#��$	���/,
word trigrams *+
����	��
����#��
��/,%�-*+
����	��
�������
����%,.�

*+
 ��� ��
 � ��
 ��� ,.�-*5
 ��� ��
 ��� ��
 ��� ,%�
*+
 � ��
 ��� ��
 ��� ,

POS trigrams *�� ��� ��� ��� ��$ ��� ,.�-*�� ��� ��� ��� ��$ ��� ,.�
*������#��$	����$	���%,%�-*������#�.$	���#��$	���/,

sentence info punctuation (’.’, ’?’, ’!’)
prefixes 62� , 6/�26%� , 62�/6%�#6% , 6/�-6%�#6%#6.7
suffixes 6-8 , 6%8 - �26%8 , 6%8 - �#6%8 - �/6%8 , 6%8 - 26%8 - �#6%8 - �/6%8
binary intial Upper Case, all Upper Case,
word no initial Capital Letter(s), all Lower Case,
features contains a (period / number / hyphen ...)
word length integer

Table 1: Rich feature pattern set used in experiments.

� Feature filtering: The feature space can be kept in a
convenient size. Smaller models allow for a higher
efficiency. By default, no more than 100,000 dimen-
sions are used. Also, features appearing less than 9
times can be discarded, which indeed causes the sys-
tem both to fight against overfitting and to exhibit a
higher accuracy. By default, features appearing just
once are ignored.

� SVM model compression: Weight vector components
lower than a given threshold, in the resulting SVM
models can be filtered out, thus enhancing efficiency
by decreasing de model size but still preserving ac-
curacy level. That is an interesting behaviour of SVM
models being currently under study. In fact, discarding
up to 70% of the weight components accuracy remains
stable, and it is not until 95% of the components are
discarded that accuracy falls below the current state–
of–the–art (97.0% - 97.2%).

� C parameter tunning: In order to deal with noise and
outliers in training data, the soft margin version of
the SVM learning algorithm allows the misclassifica-
tion of certain training examples when maximizing the
margin. This balance can be automatically adjusted by
optimizing the value of the C parameter of SVMs. A
local maximum is found exploring accuracy on a vali-
dation set for different C values at shorter intervals.



� Dictionary repairing: The lexicon extracted from the
training corpus can be automatically repaired either
based on frequency heuristics or on a list of correc-
tions supplied by the user. This makes the tagger ro-
bust to corpus errors.

� Ambiguous classes: The list of POS presenting ambi-
guity is, by default, automatically extracted from the
corpus but, if available, this knowledge can be made
explicit. This acts in favor of the system robustness.

� Open classes: The list of POS tags an unknown word
may be labeled as is also, by default, automatically
determined. As for ambiguous classes, if available, it
is well appreciated for the same reason.

� Backup lexicon: A morphological lexicon containing
words that are not present in the training corpus may
be provided. It can be also provided at tagging time.

2.2. SVMTagger

Given a text corpus (one token per line) and the path to
a previously learned SVM model (including the automati-
cally generated dictionary), it performs the POS tagging of
a sequence of words. The tagging goes on-line based on a
sliding window which gives a view of the feature context to
be considered at every decision (see Figure 1). Calculated
part–of–speech tags feed directly forward next tagging de-
cisions as context features.

Figure 1: SVMTagger. Feature extraction

Options. SVMTagger is very flexible, and adapts very
well to the needs of the user. Thus you may find the several
options currently available:

� Tagging scheme: Two different tagging schemes may
be used.

– Greedy: Each tagging decision is made based on
a reduced context. Later on, decisions are not fur-
ther reconsidered, except in the case of tagging at
two steps or tagging in two directions.

– Sentence-level: By means of dynamic program-
ming techniques (Viterbi algorithm), the global
sentence sum of SVM tagging scores is the func-
tion to maximize.

� Tagging direction: The tagging direction can be ei-
ther “left-to-right”, “right-to-left”, or a combination of
both. The tagging order varies results yielding a sig-
nificant improvement when both are combined. This
makes the tagger very robust.

� One pass / Two passes: Another way of achieving ro-
bustness is by tagging in two passes. At the first pass
only POS features related to already disambiguated
words are considered. At a second pass disambiguated
POS features are available for every word in the fea-
ture context, so when revisiting a word tagging errors
may be alleviated.

� SVM Model Compression: Just as for the learning,
weight vector components lower than a certain thresh-
old, can be ignored.

� Backup lexicon: Again, a morphological lexicon con-
taining new words that were not available in the train-
ing corpus may be provided.

2.3. SVMTeval

Given a SVMTool predicted tagging output and the cor-
responding gold-standard, SVMTeval evaluates the perfor-
mance in terms of accuracy. It is a very useful component
for the tunning of the system parameters, such as the C pa-
rameter, the feature patterns and filtering, the model com-
pression et cetera.

Moreover, based on a given morphological dictionary
(e.g. the automatically generated at training time) results
may be presented also for different sets of words (known
words vs unknown words, ambiguous words vs unambigu-
ous words). A different view of these same results can
be seen from the class of ambiguity perspective, too, i.e.,
words sharing the same kind of ambiguity may be con-
sidered together. Also words sharing the same degree of
disambiguation complexity, determined by the size of their
ambiguity classes, can be grouped.

2.4. SVMT embedded

Embedded usage of the SVMTool is also possible. It is
based on the SVMTool API which offers all the capabilities
of the SVMTool in an ellegant manner. The user must follow
four simple steps:

1. Loading of SVMTool models according to the settings
selected.

2. Preparation of input tokens for SVMTool processing.

3. POS–tagging of input tokens.

4. Collection of tagging results. Not only the winner
POS is available but the losers as well, and the SVM
score for all of them. This information could be re-
ally helpful in the case of hard decisions, when two or
more POS were nearly tied.



3. Evaluation
The SVMTool has been already successfully applied to

English and Spanish corpora, exhibiting state–of–the–art
performance (97.16% and 96.89%, respectively). In both
cases results clearly outperform the HMM–based TnT part–
of–speech tagger (Brants, 2000), compared exactly under
the same conditions. In our opinion, TnT is an example of a
really practical tagger for NLP applications. It is available
to anybody, simple and easy to use, reasonably accurate,
and extremely efficient, allowing a training from 1 millon
word corpora in just a few seconds and tagging thousands
of words per second.

As to efficiency, at tagging time, a speed of 1,500 words
per second is achieved by the current Perl implemented
prototype on a Pentium–IV, 2GHz, 1RAM Gb. Regard-
ing learning time, it strongly depends on the training set
size, tagset, feature set, learning options, et cetera. The
upper bound for the experiments reported below are about
24 CPU hours machine (Wall Street Journal corpus, 912K
words for training, full set of attributes and fine adjusting
of the C parameter). See (Giménez and Màrquez, 2003) for
further details.

Below you may find a summary of the results obtained
by the SVMTool.

3.1. Results for English

Experiments for English used the Wall Street Jour-
nal corpus (1,173 Kwords). Sections 0-18 were used for
training (912 Kwords), 19-21 for validation (131 Kwords),
and 22-24 for test (129 Kwords), respectively. 2.81% of
the words in the test set are unknown to the training set.
Best other results so far reported on this same test set
are (Collins, 2002) (97.11%) and (Toutanova et al., 2003)
(97.24%). See results in Table 2.

known amb. unk. all.

TnT 96.76% 92.16% 85.86% 96.46%
SVMTool 97.39% 93.91% 89.01% 97.16%

Table 2: Accuracy results of the SVMTool (on a one-pass, left-
to-right and right-to-left combined, greedy tagging scheme) com-
pared to TnT for English on the WSJ corpus test set. ‘known’ and
‘unk.’ refer to the subsets of known and unknown words, respec-
tively, ’amb’ to the set of ambiguous known words and ‘all’ to the
overall accuracy.

3.2. Results for Spanish

Experiments for Spanish used the LEXESP corpus (106
Kwords). It was randomly divided into training set (86
Kwords) and test set (20 Kwords). 12.21% of the words
in the test set are unknown to the training set. See results in
Table 3.

Using additional morpho-syntactic information pro-
vided by a morphological analyzer (X.Carreras et al., 2004)
in the form of a backup lexicon both tools improve very
considerably their performance. Sure it is due to the fact
that now there are no unknown words. But notice these
words have not been seen among the training data. See re-
sults in Table 4.

known amb. unk. all.

TnT 97.73% 93.70% 87.66% 96.50%
SVMTool 98.08% 95.04% 88.28% 96.89%

Table 3: Accuracy results of the SVMTool (on a one-pass, left-
to-right and right-to-left combined, greedy tagging scheme) com-
pared to TnT for Spanish on the LEXESP corpus, ‘known’ and
‘unk.’ refer to the subsets of known and unknown words, respec-
tively, ’amb’ to the set of ambiguous known words and ‘all’ to the
overall accuracy.

amb. all.

TnT 94.05% 98.41%
SVMTool 95.43% 98.86%

Table 4: Accuracy results of the SVMTool (on a one-pass right-to-
left greedy tagging scheme) compared to TnT for Spanish on the
LEXESP corpus with the aid of a backup morphological lexicon,
’amb’ refers to the set of ambiguous known words and and ‘all’ to
the overall accuracy.

4. Ongoing steps
A most efficient C++ version is currently being imple-

mented. It will offer all the current capabilities, includ-
ing embedded use. It is planned to be available for pub-
lic release by Summer 2004. The SVMTagger component
will be the first to be released. The other two components,
SVMTlearn and SVMTeval will be coming soon after.

Finally, new strategies to further increase the system ef-
fectiveness while guaranteeing robustness and efficiency,
are being studied. These involves better schemes for learn-
ing unknown words as well as a new sentence-level ap-
proach based on maximizing a product of probabilities in-
stead of a sum of SVM scores.

5. References
Brants, T., 2000. TnT - A Statistical Part-of-Speech Tagger.

In Proceedings of the Sixth ANLP.
Collins, M., 2002. Discriminative Training Methods for

Hidden Markov Models: Theory and Experiments with
Perceptron Algorithms. In Proceedings of the 7th
EMNLP Conference.

Cristianini, N. and J. Shawe-Taylor, 2000. An Introduc-
tion to Support Vector Machines. Cambridge University
Press.

Giménez, J. and L. Màrquez, 2003. Fast and Accurate Part-
of-Speech Tagging: The SVM Approach Revisited. In
Proceedings of the Fourth RANLP.

Joachims, T., 1999. Making large-Scale SVM Learning
Practical. MIT-Press.

Mihalcea, Rada, 2003. The Role of Non-Ambiguous
Words in Natural Language Disambiguation. In Pro-
ceedings of the Fourth RANLP.

Toutanova, K., D. Klein, and C. D. Manning, 2003.
Feature-rich part-of-speech tagging with a cyclic depen-
dency network. In Proceedings of HLT-NAACL’03.

X.Carreras, I. Chao, L. Padró, and M. Padró, 2004. Freel-
ing: An open-source suite of language analyzers. In Pro-
ceedings of the 4th LREC Conference.


