|
FreeLing
4.0
|
Class weak_rule is an abstract class generalizing any kind of weak rule that adaboost can use. More...
#include <weakrule.h>

Public Member Functions | |
| virtual | ~weak_rule () |
| Destructor. | |
| virtual void | classify (const example &i, double pred[])=0 |
| Classification. | |
| virtual void | read_from_stream (std::wistream *is)=0 |
| I/O operations. | |
| virtual void | write_to_stream (std::wostream *os)=0 |
| virtual void | learn (const dataset &ds, double &Z)=0 |
| learn a WR (and compute normalization factor Z) | |
| virtual double | Zcalculus (const dataset &ds) const |
| Compute normalization factor (default procedure, each weak rule can redefine (or ignore) this function if it has a more efficeint way to compute Z factor. | |
Class weak_rule is an abstract class generalizing any kind of weak rule that adaboost can use.
| virtual freeling::weak_rule::~weak_rule | ( | ) | [inline, virtual] |
Destructor.
| virtual void freeling::weak_rule::classify | ( | const example & | i, |
| double | pred[] | ||
| ) | [pure virtual] |
Classification.
Pred is an array of predictions, one for each label, the function *adds* its predicion for each label.
Implemented in freeling::mlDTree.
| virtual void freeling::weak_rule::learn | ( | const dataset & | ds, |
| double & | Z | ||
| ) | [pure virtual] |
learn a WR (and compute normalization factor Z)
Implemented in freeling::mlDTree.
| virtual void freeling::weak_rule::read_from_stream | ( | std::wistream * | is | ) | [pure virtual] |
I/O operations.
Implemented in freeling::mlDTree.
| virtual void freeling::weak_rule::write_to_stream | ( | std::wostream * | os | ) | [pure virtual] |
Implemented in freeling::mlDTree.
| virtual double freeling::weak_rule::Zcalculus | ( | const dataset & | ds | ) | const [virtual] |
Compute normalization factor (default procedure, each weak rule can redefine (or ignore) this function if it has a more efficeint way to compute Z factor.
1.7.6.1