FreeLing
4.0
|
Class AdaBoost implement a generic AB learner/classifier, which may be based on any kind of weak rule. More...
#include <adaboost.h>
Public Member Functions | |
adaboost (int nl, std::wstring t) | |
constructors, destructor and access methods | |
adaboost (const std::wstring &file, const std::wstring &codes) | |
int | n_rules () const |
void | classify (const example &i, double pred[]) const |
classification methods. | |
std::vector< double > | classify (const example &i) const |
classification returning vector: useful for Java API | |
void | pcl_ini_pointer () |
partial classification | |
int | pcl_advance_pointer (int steps) |
void | pcl_classify (const example &i, double *pred, int nrules) |
Important: pred is an array of predictions, one for each label the function *adds* its predicion for each label. | |
void | learn (dataset &ds, int nrounds, bool init, wr_params *p) |
learning methods | |
void | learn (dataset &ds, int nrounds, bool init, wr_params *p, const std::wstring &outf) |
void | set_output (std::wostream *os) |
I/O methods. | |
void | read_from_stream (std::wistream *in) |
void | read_from_file (const std::wstring &f) |
void | set_initialize_weights (bool b) |
Private Member Functions | |
void | initialize_weights (dataset &ds) |
auxiliar learning functions | |
void | update_weights (weak_rule *wr, double Z, dataset &ds) |
void | add_weak_rule (weak_rule *wr) |
adaboost (const adaboost &old_bab) | |
copy constructor forbidden | |
Private Attributes | |
bool | option_initialize_weights |
class parameters | |
std::wstring | wr_type |
type of used weak rules | |
adaboost::const_iterator | pcl_pointer |
int | nrules |
std::wostream * | out |
output |
Class AdaBoost implement a generic AB learner/classifier, which may be based on any kind of weak rule.
freeling::adaboost::adaboost | ( | const adaboost & | old_bab | ) | [private] |
copy constructor forbidden
freeling::adaboost::adaboost | ( | int | nl, |
std::wstring | t | ||
) |
constructors, destructor and access methods
freeling::adaboost::adaboost | ( | const std::wstring & | file, |
const std::wstring & | codes | ||
) |
void freeling::adaboost::add_weak_rule | ( | weak_rule * | wr | ) | [private] |
void freeling::adaboost::classify | ( | const example & | i, |
double | pred[] | ||
) | const [virtual] |
classification methods.
Important: pred is an array of predictions, one for each label the function *assigns* its predicion for each label.
Implements freeling::classifier.
std::vector<double> freeling::adaboost::classify | ( | const example & | i | ) | const |
classification returning vector: useful for Java API
void freeling::adaboost::initialize_weights | ( | dataset & | ds | ) | [private] |
auxiliar learning functions
void freeling::adaboost::learn | ( | dataset & | ds, |
int | nrounds, | ||
bool | init, | ||
wr_params * | p | ||
) |
learning methods
void freeling::adaboost::learn | ( | dataset & | ds, |
int | nrounds, | ||
bool | init, | ||
wr_params * | p, | ||
const std::wstring & | outf | ||
) |
int freeling::adaboost::n_rules | ( | ) | const |
void freeling::adaboost::pcl_classify | ( | const example & | i, |
double * | pred, | ||
int | nrules | ||
) |
Important: pred is an array of predictions, one for each label the function *adds* its predicion for each label.
void freeling::adaboost::pcl_ini_pointer | ( | ) |
partial classification
void freeling::adaboost::read_from_file | ( | const std::wstring & | f | ) |
void freeling::adaboost::read_from_stream | ( | std::wistream * | in | ) |
void freeling::adaboost::set_initialize_weights | ( | bool | b | ) |
void freeling::adaboost::set_output | ( | std::wostream * | os | ) |
I/O methods.
void freeling::adaboost::update_weights | ( | weak_rule * | wr, |
double | Z, | ||
dataset & | ds | ||
) | [private] |
int freeling::adaboost::nrules [private] |
bool freeling::adaboost::option_initialize_weights [private] |
class parameters
std::wostream* freeling::adaboost::out [private] |
output
adaboost::const_iterator freeling::adaboost::pcl_pointer [private] |
std::wstring freeling::adaboost::wr_type [private] |
type of used weak rules